Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Osteoporosis drugs compared for side effects, efficacy in Loyola study

03.12.2013
Findings to help physicians guide treatment options for women

A study comparing the efficacy and tolerability of two popular osteoporosis drugs, denosumab and zoledronic acid, found that denosumab had a significantly greater effect on increasing spine bone mineral density and zoledronic acid caused more flulike symptoms. These findings were presented recently at the American Society for Bone and Mineral Research’s annual meeting.

Researchers performed a retrospective chart review and survey of 107 patients to compare the efficacy, patient satisfaction, cost and known adverse effects of denosumab versus zoledronic acid, including muscle pain, back pain and flulike symptoms. The denosumab and zoledronic acid groups were statistically similar in all areas but spine bone mineral density (increased 0.060 g/cm2 versus 0.021 g/cm2, respectively) and flulike symptoms (none versus 29 percent of patients).

“Both groups of patients were satisfied with their treatment despite the discrepancies in the drugs,” said Kellen Sheedy, first author and Stritch School of Medicine student.

The FDA approved denosumab in 2010 for postmenopausal women with osteoporosis. It is injected subcutaneously (60 mg) every six months. The treatment works by inhibiting bone loss and fracture risk.

Zoledronic acid was approved by the FDA in 2007 for osteoporosis. This treatment is administered intravenously (5 mg) once every 12 months. It is the most potent of the drugs in its class, and it works by interfering with the bone-breakdown process.

“This study helped us quantify the efficacy and adverse effects of these two drugs providing further guidance for physicians who prescribe these treatments,” said Pauline Camacho, MD, study investigator and director of the Osteoporosis & Metabolic Bone Disease Center at Loyola University Health System. “While this was the first head-to-head comparison of these two treatments, larger prospective studies will be needed to confirm these findings.”

Loyola University Health System (LUHS) is a member of Trinity Health. Based in the western suburbs of Chicago, LUHS is a quaternary care system with a 61-acre main medical center campus, the 36-acre Gottlieb Memorial Hospital campus and more than 30 primary and specialty care facilities in Cook, Will and DuPage counties. The medical center campus is conveniently located in Maywood, 13 miles west of the Chicago Loop and 8 miles east of Oak Brook, Ill. The heart of the medical center campus is a 559-licensed-bed hospital that houses a Level 1 Trauma Center, a Burn Center and the Ronald McDonald® Children's Hospital of Loyola University Medical Center. Also on campus are the Cardinal Bernardin Cancer Center, Loyola Outpatient Center, Center for Heart & Vascular Medicine and Loyola Oral Health Center as well as the LUC Stritch School of Medicine, the LUC Marcella Niehoff School of Nursing and the Loyola Center for Fitness. Loyola's Gottlieb campus in Melrose Park includes the 255-licensed-bed community hospital, the Professional Office Building housing 150 private practice clinics, the Adult Day Care, the Gottlieb Center for Fitness, Loyola Center for Metabolic Surgery and Bariatric Care and the Loyola Cancer Care & Research at the Marjorie G. Weinberg Cancer Center at Melrose Park.

Nora Dudley | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>