Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New optical metrics can identify patients on 'fast track' to decreased vision

25.06.2013
Subtle abnormalities predict which older adults will have faster decline in visual acuity

Sophisticated new optical quality metrics can identify older adults likely to have more rapid age-related declines in vision, suggests a study, "Factors Accounting for the 4-Year Change in Acuity in Patients Between 50 and 80 Years", in the July issue of Optometry and Vision Science, official journal of the American Academy of Optometry. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

The study by Darren E. Koenig, OD, PhD, and colleagues of University of Houston College of Optometry defines three advanced optical measures that may help in predicting which older patients will have larger drops in visual acuity over time. "These fast-changing optical metrics allow the identification of patients at risk of being on a fast track to visual acuity loss," comments Anthony Adams, OD, PhD, Editor-in-Chief of Optometry and Vision Science.

Advanced Optical Measures Predict Change in Visual Acuity

Dr Koenig and coauthors performed a follow-up study in 148 older adults, aged 50 to 80 years. In addition to standard visual acuity testing, the participants underwent wavefront error (WFE) testing—a computerized test that can detect subtle abnormalities in the eye's handling of light. About 40 optical components based on WFE were calculated, including 31 different image quality measures, four measures of light scatter in the eye, and four measures of opacification (clouding) of the lens of the eye.

Four years later, visual acuity was measured again. The optical metrics were evaluated for their ability to predict the rate of decline in visual acuity during that time. The goal was to see whether any of the image quality or other metrics could predict which patients would have faster than usual age-related declines in vision.

Overall, the average change in visual acuity during follow-up was loss of 1.6 letters on the standard eye chart. That was consistent with the expected age-related decline.

However, a subgroup of 50 patients had larger changes in visual acuity during follow-up. In this group the average change was loss of 3.4 letters.

Three Significant Predictors of Faster Age-Related Visual Decline

With adjustment for other factors, three optical measures predicted a larger change in visual acuity. These included one optical quality measure ("trefoil"), one measure of optical light scatter ("point spread function entropy"), and one measure of lens clouding (posterior subcapsular cataract).

Together, these three measures accounted for 32 percent of the change in visual acuity in patients with larger-than-expected change in visual acuity. Older age explained at additional two percent of the change.

For the overall sample of 148 eyes, the same factors explained 15 percent of the change in visual acuity. In these slower-changing eyes, older age was the most important predictor.

Advanced optical quality metrics can detect a wide range of minor imperfections in the visual performance of the eye. Computerized WFE analysis is becoming more widely available to detect these subtle vision defects, for example, as part of LASIK and corneal surgery.

The new study suggests that some of these WFE-based metrics may be useful in predicting which patients will have more rapid than usual age-related decline in visual acuity. "Correlations like those found here in fast changing eyes allow the identification of those at risk of being on a fast track to acuity loss," Dr Koenig and coauthors conclude.

"This raises the possibility that those patients may be able to be identified prior to their vision loss simply by measuring these optical components at the outset," Dr Adams adds. "The relatively recent ability to measure many components of the optics of the eye, beyond simply the refractive prescription for glasses or contact lenses, has made this research possible."

To read the article, "Factors Accounting for the 4-Year Change in Acuity in Patients Between 50 and 80 Years", please visit http://journals.lww.com/optvissci/Fulltext/2013/07000/Factors_Accounting_

for_the_4_Year_Change_in_Acuity.3.aspx

About Optometry and Vision Science

Optometry and Vision Science, official journal of the American Academy of Optometry, is the most authoritative source for current developments in optometry, physiological optics, and vision science. This frequently cited monthly scientific journal has served primary eye care practitioners for more than 75 years, promoting vital interdisciplinary exchange among optometrists and vision scientists worldwide.

About the American Academy of Optometry

Founded in 1922, the American Academy of Optometry is committed to promoting the art and science of vision care through lifelong learning. All members of the Academy are dedicated to the highest standards of optometric practice through clinical care, education or research.

About Lippincott Williams & Wilkins

Lippincott Williams & Wilkins (LWW) is a leading international publisher of trusted content delivered in innovative ways to practitioners, professionals and students to learn new skills, stay current on their practice, and make important decisions to improve patient care and clinical outcomes.

LWW is part of Wolters Kluwer Health, a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company with 2012 annual revenues of €3.6 billion ($4.6 billion).

Connie Hughes | EurekAlert!
Further information:
http://www.wolterskluwer.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>