Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Online shopping might not be as green as we thought

08.02.2016

Study provides insight into impacts of home shopping on vehicle operations and greenhouse gas emissions

Logic suggests that online shopping is "greener" than traditional shopping. After all, when people shop from home, they are not jumping into their cars, one by one, to travel to the mall or the big box store.


A study by researchers in the Delaware Center for Transportation provides insight into the impacts of home shopping on vehicle operations and greenhouse gas emissions.

Image by Jeffrey C. Chase/ University of Delaware

But a multi-year regional study at the University of Delaware suggests that home shopping has a greater impact on the transportation sector than the public might suspect. The results of the research are documented in a paper, "Impacts of Home Shopping on Vehicle Operations and Greenhouse Gas Emissions," in the International Journal of Sustainable Development and World Ecology.

The study, which focused on the city of Newark, Delaware, was led by Arde Faghri, professor in the Department of Civil and Environmental Engineering and director of the Delaware Center for Transportation (DCT).

The project included data collection through a survey to identify shopping behavior and summary of the survey results by product category, followed by simulation and analysis.

"Our simulation results showed that home shopping puts an additional burden on the local transportation network, as identified through four measures of effectiveness -- travel time, delay, average speed, and greenhouse gas emissions," says co-author Mingxin Li, a researcher at DCT.

While it's true that e-stores require less space and use less energy, Faghri points out that online shopping puts more delivery trucks on the roads, which translates into more wear-and-tear on pavements and increased environmental pollution through the emission of fine particulate matter from diesel engines.

An additional problem is that residential and downtown streets were not designed to accommodate frequent truck stops, parking, loading and unloading, so trucks can interfere with through traffic, causing delays and compromising safety.

But what may be the most surprising finding of the study has nothing to do with increased truck traffic.

"We found that the total number of vehicles miles traveled hasn't decreased at all with the growth of online shopping," Faghri says. "This suggests that people are using the time they save by shopping on the internet to do other things like eating out at restaurants, going to the movies, or visiting friends."

Faghri cautions that his study looked only at residential commerce, not purchases made by commercial and industrial businesses, and that the data his team collected was limited to a very small geographic area.

However, he emphasizes that local, state, regional, and national planners need to keep a close eye on the impacts of the home shopping trend when planning and budgeting for infrastructure needs.

"The increase in online shopping also affects land use patterns such as the number and size of stores in large shopping malls with vast parking spaces, as well as changes in labor markets, with, for example, less demand for sales personnel and more for truck drivers," he says.

Media Contact

Peter Bothum
pbothum@udel.edu
302-831-1418

 @UDResearch

http://www.udel.edu 

Peter Bothum | EurekAlert!

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>