Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Online shopping might not be as green as we thought

08.02.2016

Study provides insight into impacts of home shopping on vehicle operations and greenhouse gas emissions

Logic suggests that online shopping is "greener" than traditional shopping. After all, when people shop from home, they are not jumping into their cars, one by one, to travel to the mall or the big box store.


A study by researchers in the Delaware Center for Transportation provides insight into the impacts of home shopping on vehicle operations and greenhouse gas emissions.

Image by Jeffrey C. Chase/ University of Delaware

But a multi-year regional study at the University of Delaware suggests that home shopping has a greater impact on the transportation sector than the public might suspect. The results of the research are documented in a paper, "Impacts of Home Shopping on Vehicle Operations and Greenhouse Gas Emissions," in the International Journal of Sustainable Development and World Ecology.

The study, which focused on the city of Newark, Delaware, was led by Arde Faghri, professor in the Department of Civil and Environmental Engineering and director of the Delaware Center for Transportation (DCT).

The project included data collection through a survey to identify shopping behavior and summary of the survey results by product category, followed by simulation and analysis.

"Our simulation results showed that home shopping puts an additional burden on the local transportation network, as identified through four measures of effectiveness -- travel time, delay, average speed, and greenhouse gas emissions," says co-author Mingxin Li, a researcher at DCT.

While it's true that e-stores require less space and use less energy, Faghri points out that online shopping puts more delivery trucks on the roads, which translates into more wear-and-tear on pavements and increased environmental pollution through the emission of fine particulate matter from diesel engines.

An additional problem is that residential and downtown streets were not designed to accommodate frequent truck stops, parking, loading and unloading, so trucks can interfere with through traffic, causing delays and compromising safety.

But what may be the most surprising finding of the study has nothing to do with increased truck traffic.

"We found that the total number of vehicles miles traveled hasn't decreased at all with the growth of online shopping," Faghri says. "This suggests that people are using the time they save by shopping on the internet to do other things like eating out at restaurants, going to the movies, or visiting friends."

Faghri cautions that his study looked only at residential commerce, not purchases made by commercial and industrial businesses, and that the data his team collected was limited to a very small geographic area.

However, he emphasizes that local, state, regional, and national planners need to keep a close eye on the impacts of the home shopping trend when planning and budgeting for infrastructure needs.

"The increase in online shopping also affects land use patterns such as the number and size of stores in large shopping malls with vast parking spaces, as well as changes in labor markets, with, for example, less demand for sales personnel and more for truck drivers," he says.

Media Contact

Peter Bothum
pbothum@udel.edu
302-831-1418

 @UDResearch

http://www.udel.edu 

Peter Bothum | EurekAlert!

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>