Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older brains make good use of 'useless' information

21.01.2010
A new study has found promising evidence that the older brain's weakened ability to filter out irrelevant information may actually give aging adults a memory advantage over their younger counterparts.

A long line of research has already shown that aging is associated with a decreased ability to tune out irrelevant information. Now scientists at Baycrest's world-renowned Rotman Research Institute have demonstrated that when older adults "hyper-encode" extraneous information – and they typically do this without even knowing they're doing it – they have the unique ability to "hyper-bind" the information; essentially tie it to other information that is appearing at the same time.

The study, which appears online this week in the journal Psychological Science, was led by Karen Campbell, a PhD student in psychology at the University of Toronto, with supervision from Rotman senior scientist Dr. Lynn Hasher, a leading authority in attention and inhibitory functioning in younger and older adults.

"We found that older brains are not only less likely to suppress irrelevant information than younger brains, but they can link the relevant and irrelevant pieces of information together and implicitly transfer this knowledge to subsequent memory tasks," said Campbell.

In the study, 24 younger adults (17 – 29 years) and 24 older adults (60 – 73 years) participated in two computer-based memory tasks that were separated by a 10-minute break. In the first task, they were shown a series of pictures that were overlapped by irrelevant words (e.g. picture of a bird and the word "jump"). They were told to ignore the words and concentrate on the pictures only. Every time they saw the same picture twice in a row, they were to press the space bar. After completing this task and following a 10-minute break, they were tested on a "paired memory task" which essentially challenged them to recall how the pictures and words were paired together from the first task. They were shown three kinds of paired pictures – preserved pairs (pictures with overlap words that they saw in the first task), disrupted pairs (pictures they saw in the first task but with different overlap words) and new pairs (new pictures and new words they hadn't seen before).

The older adults showed a 30% advantage over younger adults in their memory for the preserved pairs (the irrelevant words that went with the pictures in the first task) relative to the new pairs.

"This could be a silver lining to aging and distraction," said Dr. Hasher, senior scientist on the study. "Older adults with reduced attentional regulation seem to display greater knowledge of seemingly extraneous co-occurrences in the environment than younger adults. As this type of knowledge is thought to play a critical role in real world decision- making, older adults may be the wiser decision-makers compared to younger adults because they have picked up so much more information."

The study was funded by the Canadian Institutes of Health Research and the U.S. National Institute on Aging. In addition to Campbell and Dr. Hasher, the research team included graduate student Ruthann Thomas, now at Washington University.

Kelly Connelly | EurekAlert!
Further information:
http://www.baycrest.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>