Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil Spill Reshapes Sweeping New Study Of Oyster Reefs - Virginia To Florida

07.06.2010
Florida State University marine biologist David L. Kimbro will lead scientists from Florida, Georgia, North Carolina and Maine in a massive effort to study the health and future of the nation’s natural oyster reefs in 12 estuaries spanning 1,000 miles of Atlantic and Gulf of Mexico shoreline.

The multi-institutional project, which kicked off June 1, has become even more vital now following the calamitous Gulf oil spill that began in April. Funded by a new, three-year $850,342 grant from the National Science Foundation’s Biological Oceanography Program, the study is expected to guide restoration of what were already the world's most devastated estuarine habitats while producing important information on the oil spill’s effects. Some of the scientists’ work will be documented on public television.

“Our forthcoming research will be critically important because oysters promote healthy estuaries by filtering water and increasing the diversity of economically important fishes and invertebrates,” said Kimbro, a postdoctoral associate at The Florida State University Coastal and Marine Laboratory. “In turn, healthy estuaries support a lot of economic and recreational activity.

“But, having been decimated by historical overfishing, disease and poor water quality, natural oyster reefs are now the most degraded estuarine habitat worldwide, with only about 15 percent of global oyster reefs remaining,” he said. “Unfortunately, here in the United States, we’ve eaten and dredged away most of the oyster habitat.”

Before harvesting began along the U.S. Gulf and Atlantic coasts, oyster reefs probably maintained estuarine health by filtering enormous volumes of water, cycling nutrients, and increasing biodiversity and system productivity, Kimbro said.

Although considerable funding and effort have been devoted to restoring oyster reefs in estuaries up and down the Atlantic and Gulf coasts in order to mitigate the declining trend of estuarine health, Kimbro said it’s not currently clear why some restoration projects fail and others succeed at improving diversity and ecosystem functioning.

“Consequently, it is difficult for resource managers to determine where and to what degree restoration should be pursued,” he said. “Our study will seek to create a biogeographic framework to help resource managers decide where and how to focus our nation’s restoration dollars. We will be focusing on natural oyster reefs rather than restored ones, but our information will be able to help guide future restoration efforts.”

The researchers will investigate the degree to which differences in predators –– fishes and invertebrates –– and climate among Gulf and Atlantic coast estuaries act to control estuarine health by altering both the number of oysters and the amount of water they filter.

“In natural oyster reefs, predators such as fish and large crabs can protect oysters either by eating the smaller snails and crabs that consume the oysters or by scaring the snails and crabs enough to spoil their appetite for them,” Kimbro said.

“Doing one versus the other may determine not only whether more oysters are in certain locations but also whether those oysters filter a lot of water –– because they can sense the presence of predators and won’t open up to filter water when their consumers are around,” he said. “The amount of water oysters filter matters, because it directly affects an ecosystem’s nutrient cycling rate.”

As the study’s principal investigator, Florida State’s Kimbro will direct the project’s four research teams, comprised of marine ecologists and ecosystem scientists compiling oyster reef data in a dozen estuaries along the Atlantic and Gulf coasts, including several in Florida. Heading the teams are FSU Coastal and Marine Laboratory marine ecologist Anne Randall Hughes and scientists James Byers, of the University of Georgia; Michael Piehler, University of North Carolina-Chapel Hill; and Jonathan Grabowski, of the Gulf of Maine Research Institute.

The project’s design is “academically novel,” said Kimbro, in part because it will integrate the fields of experimental community ecology and ecosystem science and do so over an exceptionally large spatial scale of almost 1,000 miles.

“And, now, the oil will become a part of the system and patterns that we detect,” Kimbro said. “As a result, we are quickly integrating ideas on how our project can be used to not only quantify the environmental injury caused by the oil spill but also as a means to learn how large disturbances organize ecological systems.”

As the NSF-funded study gets underway, Kimbro also is pursuing a grant from a Florida-based organization that would enable his teams to take additional samples of the entire food web at all research locations throughout the state –– including two sites with oil, on the Gulf, and two on the Atlantic, presumably with less oil. Stable isotopes would then be used to determine background levels of hydrocarbons and connections throughout the food web.

Kimbro said the researchers would continue to collect those kinds of data throughout the course of the NSF study, especially as the oil hits.

“We will then be able to see not only the immediate impacts of the oil –– for instance, when an entire oyster reef is overcome, and dies –– but also how the diet composition of larger species, such as fish, changes as the sources of their normal diet are destroyed or drastically altered,” he said.

“Within oil impacted areas, we expect not all shorelines will be damaged,” Kimbro said. “As a result, we also expect undamaged shorelines to serve as a very crowded refuge for animals fleeing oiled sites that in turn may throw the balance of the undamaged food web out of whack. So, there will be indirect effects of the oil spill that will likely filter over into untouched habitats.

“Finally, we will collect the same types of samples in salt marsh habitats to determine if one habitat and its food web has been affected more than the other,” he said.

WFSU-TV in Tallahassee will feature the ecosystem research of Kimbro and his colleague Hughes on its website in the multimedia blog, In the Grass, On the Reef, as well as in a forthcoming documentary.

The Gulf oil spill had not yet occurred when WFSU-TV and the researchers first began planning the blog. Though it is difficult to predict all of the potential effects of the spill in the months and years to come on the delicately balanced and interconnected plant and animal habitats along the Florida Gulf Coast, it is possible that the blog could serve as an online window into the study of an unfolding ecological catastrophe. Kimbro and Hughes intend to document their ongoing observations in writing, still images and video.

For additional information on Kimbro and Hughes and their work at Florida State’s Coastal and Marine Laboratory, go to www.marinelab.fsu.edu/.

CONTACT: David Kimbro
(850) 697-4092; dkimbro@bio.fsu.edu

David Kimbro | Newswise Science News
Further information:
http://www.fsu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>