Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil from Spill Could Have Powered 38,000 Cars (And More) for a Year

11.06.2010
As of today (Wednesday, June 9), if all the oil from the Deepwater Horizon spill in the Gulf of Mexico had been used for fuel, it could have powered 38,000 cars, and 3,400 trucks, and 1,800 ships for a full year, according to University of Delaware Prof. James J. Corbett. That's based on the estimated spill rate of 19,000 barrels of oil per day.

Corbett, a professor of marine policy in UD's College of Earth, Ocean, and Environment, works on energy and environmental solutions for transportation. He has launched a website that reports the impact of the Deepwater Horizon oil spill in terms of lost uses of the lost fuel on a daily basis.

Visitors to the website can choose the spill rate they believe is most accurate from a range of reported estimates, and the website will automatically calculate how many cars, trucks, and ships could have been powered for a year, based on Bureau of Transportation Statistics.

Here are just a few of Corbett's findings:

* By May 5 (15 days after the spill), the oil lost could have fueled 470 container ships serving New York and New Jersey ports for a year.
* By May 25 (35 days after the spill), energy from the spilled oil could have provided a year's gasoline for all registered automobiles (about 26,000 cars) in Newark, Del., where UD's main campus is located.

* By May 31 (41 days after the spill), the lost energy could have fueled one freight truck on 17 trips across all 4 million miles of U.S. highway.

Corbett says he developed the website to help put the oil spill in a perspective to which everyday users of petroleum, including most Americans, can relate.

Transportation activities consume about two-thirds of all petroleum in the United States -- more than 20 billion barrels per day, according to Corbett. Gasoline for automobiles accounts for about two-thirds of U.S. total transportation energy, diesel fuels power most of our goods movement, and most international containerized cargoes are delivered by ships -- the largest vehicles ever built.

“Energy resources offshore are being explored because each of us petroleum consumers is demanding more,” Corbett says.

The website also may help us decide how to reduce risks of future oil spills.

“Drilling this exploratory well by the Deepwater Horizon was an extremely high-risk proposition,” Corbett says. “At $75 per barrel of crude oil, the oil spilled would have been worth about $90 million in terms of spill oil value if extracted for refining. Some experts are now estimating damages from the spill to exceed $10 billion. That's a potential 100 to 1 loss, given the spill damage-to-value ratio.”

Corbett's research collaborations focus on ways to improve the energy performance of transportation systems using ships, trucks, trains, and other vehicles. There are ways to reduce the need for offshore oil drilling, Corbett says:

* If we improve automobile fuel economy to 35.5 miles per gallon (mpg), as proposed by the current administration, we would offset demand equivalent to the gasoline energy lost by 199 years of Deepwater Horizon daily releases.

* If we add only 2 mpg to the fuel economy for trucks, as proposed by the Union of Concerned Scientists, we would offset diesel-driven energy demand equivalent to 12 years of Deepwater Horizon daily releases.

* Rebalancing how we transport goods would achieve substantial energy savings. A shift from truck to rail for specific commodities/routes would require about 20 percent of the energy per ton-mile compared to trucking. Achieving this would require an investment in infrastructure and green logistics to facilitate intermodal combinations of trucking and rail rather than treating the modes as competitors.

* Shifting passengers from single-occupant cars to car-sharing/carpooling and better transit also would produce important reductions.

“The wise use of petroleum and other energy resources is an opportunity for each of us,” Corbett says. “We can reduce the need to drill deeper into environmental risk. Within a few miles of our communities, we can do a lot to reduce energy demand.”

Original story with link to YouTube video on UDaily news service at http://www.udel.edu/udaily/2010/jun/corbett060910.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu
http://www.udel.edu/udaily/2010/jun/corbett060910.html

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>