Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oil palm surging source of greenhouse gas emissions

27.04.2012
Continued expansion of industrial-scale oil palm plantations on the island of Borneo will become a leading cause of greenhouse gas emissions by 2020 unless strong forest and peatland protections are enacted and enforced, according to a National Academy of Sciences study.

The study, conducted by Yale and Stanford researchers, found that about two-thirds of lands outside of protected areas in the Ketapang District of West Kalimantan Province in Indonesian Borneo are leased to oil palm agribusiness companies.

If these leases are converted to oil palm at current expansion rates, by 2020 monotypic palm stands will occupy more than a third of regional lands and intact forests will decline to less than 5 percent from approximately 15 percent in 2008.

The researchers were surprised to learn that 50 percent of oil palm plantations were established on peatlands through last year. When peat soils are drained for oil palm cultivation, they begin to release carbon dioxide, a greenhouse gas. The study found that if oil palm expansion continues, with no restrictions on peatland development, almost 90 percent of oil palm's greenhouse gas emissions will come from peatlands by 2020.

"Preventing oil palm establishment on peatlands will be critical for any greenhouse gas emissions-reduction strategy," said Kimberly Carlson, a doctoral candidate at the Yale School of Forestry & Environmental Studies and co-author of the study with Lisa Curran, a professor of anthropology at Stanford University.

Carlson pointed out that even if future oil palm expansion is halted in forests and peatlands, greenhouse gas emissions will decline by only 3 percent to 4 percent. She said that instead of simply placing a moratorium on oil palm expansion, "protecting secondary and logged forests, as well as peatlands, is the strategy that most effectively reduces carbon emissions and maintains forest cover."

The researchers argue that regional emissions could be reduced by up to 21 percent by 2020 through the prevention of oil palm encroachment, wildfire, logging, and agricultural expansion on intact and previously logged forested lands and peatlands. But even in the best-case scenario for reducing greenhouse gas emissions, 28 percent of 1 million acres of community lands will be converted to oil palm.

"Unfortunately forest and peatland protection does not automatically generate benefits for local communities," said Curran. "To become truly sustainable, oil palm companies must not only protect existing forests and carbon stocks, but should ensure that any land acquired from resident smallholder farmers and communities meets the criteria for free, prior and informed consent, and is equitably and transparently compensated."

Incorporating people, forests and carbon in their assessment required building a spatially explicit simulation model from scratch. The researchers started with a model of deforestation in the Brazilian Amazon developed by co-author Britaldo Soares-Filho and his team, and rebuilt it for the drastically different environment of Indonesian Borneo.

Palm oil is a form of edible vegetable oil used in many products, including cookies, crackers, popcorn, frozen dinners, low-fat dairy, candy, soap and cosmetics. Indonesia, currently the global leader in palm-oil production, aims to increase the area for oil palm cultivation to 45 million acres by 2020 from 24 million acres in 2009, yet little is known about the influence of oil palm expansion on people and ecosystems.

"Early on we decided to include people in our assessment," said Carlson. "Local residents and their lands are often forgotten in conversations about forests."

The study, "Committed Carbon Emissions Deforestation, and Community Land Conversion from Oil Palm Plantation Expansion in West Kalimantan, Indonesia," was funded by the Natural Aeronautics and Space Administration's Land Cover/Land-Use Change Program, John D. and Catherine T. McArthur Foundation, National Science Foundation, East-West Center, and Stanford and Yale universities.

David DeFusco | EurekAlert!
Further information:
http://www.yale.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>