Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ohio State researchers restore immune function in spinal injured mice

In a new study, researchers at The Center for Brain and Spinal Cord Repair at The Ohio State University Wexner Medical Center show that is possible to restore immune function in spinal injured mice.

People with spinal cord injury often are immune compromised, which makes them more susceptible to infections. Why these people become immune-suppressed is not known, but the Ohio State study found that a disorder called autonomic dysreflexia can cause immune suppression.

Autonomic dysreflexia is a potentially dangerous complication of high-level spinal cord injury characterized by exaggerated activation of spinal autonomic (sympathetic) reflexes. This can cause an abrupt onset of excessively high blood pressure that can cause pulmonary embolism, stroke and in severe cases, death.

"Our research offers an explanation for why people with spinal cord injuries develop a condition referred to as 'central immune depression syndrome.' Their immune systems, which are required to fight off infection, are suppressed due to damage or malfunction in regions of the spinal cord that help control immune function," said principal investigator Phillip G. Popovich, Ph.D., Professor of Neuroscience in Ohio State's College of Medicine and Director of Ohio State's Center for Brain and Spinal Cord Repair.

The study is published in the Journal of Neuroscience.

Researchers found that autonomic dysreflexia develops spontaneously in spinal cord injured mice, and becomes more frequent as time passes from the initial spinal cord injury.

They also found that simple, everyday occurrences that activate normal spinal autonomic reflexes, such as having bowel movements or emptying the bladder, become hyperactive and suppress immune function in people with spinal cord injury.

In the study, Popovich and colleagues were able to restore immune function in mice with spinal cord injuries using drugs that inhibit norepinephrine and glucocorticoids, immune modulatory hormones that are produced during the onset and progression of AD. They also observed in a patient with a high-level spinal cord injury that briefly inducing autonomic dysreflexia impaired immune function, confirming that their findings in mice have relevance to humans.

"Although we don't know how to fix this yet, we also show that it is possible to restore immune function in spinal injured mice," Popovich said. "After spinal cord injury, the ability of the spinal cord to control the immune system is impaired. As result, these individuals become susceptible to infection, and often die from these infections. For those that survive, the infections can impair what little function they have left after the spinal cord injury."

The study found that autonomic dysreflexia causes immune suppression in part by releasing into blood and immune organs high levels of immune modulatory hormones that non-selectively kill mature and immature white blood cells in the spleen, said first author Yi Zhang, a post-doctoral neuroscience researcher at Ohio State.

"Our research is laying the groundwork for potential therapeutic targets for reversing central immune depression syndrome," Zhang said, adding that further research is needed.

Ohio State's Center for Brain and Spinal Cord Repair is an interdisciplinary collaboration of basic and clinical scientists working to promote recovery and repair and to discover new treatments for individuals who suffer from brain or spinal cord injuries.

Ohio State researchers involved in this study are Zhen Guan, Brenda Reader, Todd Shawler, Shweta Mandrekar-Colucci, Kun Huang, Zachary Weil, Anna Bratasz, Jonathan Wells, Nicole Powell, John Sheridan and Caroline Whitacre.

Other researchers involved in this study include Alexander Rabchevsky, University of Kentucky and Mark Nash, University of Miami Miller School of Medicine.

This research was supported by the National Institutes of Health (R21 NS067260) and the Ray W. Poppleton Endowment.

Eileen Scahill | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>