Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ohio State researchers restore immune function in spinal injured mice

In a new study, researchers at The Center for Brain and Spinal Cord Repair at The Ohio State University Wexner Medical Center show that is possible to restore immune function in spinal injured mice.

People with spinal cord injury often are immune compromised, which makes them more susceptible to infections. Why these people become immune-suppressed is not known, but the Ohio State study found that a disorder called autonomic dysreflexia can cause immune suppression.

Autonomic dysreflexia is a potentially dangerous complication of high-level spinal cord injury characterized by exaggerated activation of spinal autonomic (sympathetic) reflexes. This can cause an abrupt onset of excessively high blood pressure that can cause pulmonary embolism, stroke and in severe cases, death.

"Our research offers an explanation for why people with spinal cord injuries develop a condition referred to as 'central immune depression syndrome.' Their immune systems, which are required to fight off infection, are suppressed due to damage or malfunction in regions of the spinal cord that help control immune function," said principal investigator Phillip G. Popovich, Ph.D., Professor of Neuroscience in Ohio State's College of Medicine and Director of Ohio State's Center for Brain and Spinal Cord Repair.

The study is published in the Journal of Neuroscience.

Researchers found that autonomic dysreflexia develops spontaneously in spinal cord injured mice, and becomes more frequent as time passes from the initial spinal cord injury.

They also found that simple, everyday occurrences that activate normal spinal autonomic reflexes, such as having bowel movements or emptying the bladder, become hyperactive and suppress immune function in people with spinal cord injury.

In the study, Popovich and colleagues were able to restore immune function in mice with spinal cord injuries using drugs that inhibit norepinephrine and glucocorticoids, immune modulatory hormones that are produced during the onset and progression of AD. They also observed in a patient with a high-level spinal cord injury that briefly inducing autonomic dysreflexia impaired immune function, confirming that their findings in mice have relevance to humans.

"Although we don't know how to fix this yet, we also show that it is possible to restore immune function in spinal injured mice," Popovich said. "After spinal cord injury, the ability of the spinal cord to control the immune system is impaired. As result, these individuals become susceptible to infection, and often die from these infections. For those that survive, the infections can impair what little function they have left after the spinal cord injury."

The study found that autonomic dysreflexia causes immune suppression in part by releasing into blood and immune organs high levels of immune modulatory hormones that non-selectively kill mature and immature white blood cells in the spleen, said first author Yi Zhang, a post-doctoral neuroscience researcher at Ohio State.

"Our research is laying the groundwork for potential therapeutic targets for reversing central immune depression syndrome," Zhang said, adding that further research is needed.

Ohio State's Center for Brain and Spinal Cord Repair is an interdisciplinary collaboration of basic and clinical scientists working to promote recovery and repair and to discover new treatments for individuals who suffer from brain or spinal cord injuries.

Ohio State researchers involved in this study are Zhen Guan, Brenda Reader, Todd Shawler, Shweta Mandrekar-Colucci, Kun Huang, Zachary Weil, Anna Bratasz, Jonathan Wells, Nicole Powell, John Sheridan and Caroline Whitacre.

Other researchers involved in this study include Alexander Rabchevsky, University of Kentucky and Mark Nash, University of Miami Miller School of Medicine.

This research was supported by the National Institutes of Health (R21 NS067260) and the Ray W. Poppleton Endowment.

Eileen Scahill | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>