Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification as a hearing aid for fish?

19.04.2013
Study shows that effects of changing ocean pH may result in increase in the hearing sensitivity of fish

Ocean acidification, which occurs as CO2 is absorbed by the world's oceans, is known to negatively impact a wide variety of marine animals ranging from massive corals to microscopic plankton. However, there is much less information about how fish may be impacted by acidification, should carbon emissions continue to rise as a result of human activities.

In a new study published in the Proceedings of the National Academy of Sciences USA, University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science researcher Sean Bignami, along with National Oceanic and Atmospheric Administration (NOAA) scientists Ian Enochs, Derek Manzello, and UM Professors Su Sponaugle and Robert Cowen, report stunning new insight into the potential effects of acidification on the sensory function of larval cobia (Rachycentron canandum). Cobia are large tropical fish that are highly mobile as they mature and are popular among recreational anglers.

Bignami and the team utilized 3D X-rays (micro-CT scans) similar to what a patient might receive at a hospital to determine that fish raised in low-pH seawater, simulating future conditions, have larger and more dense otoliths (ear stones) than those from higher-pH seawater. Otoliths are distinct calcium carbonate structures within the inner ear of fishes that are used for hearing and balance. The changes resulted in up to a 58-percent increase in otolith mass, and when tested in a mathematical model of otolith function, showed a potential increase in hearing sensitivity and up to a 50-percent increase in hearing range.

"Increased hearing sensitivity could improve a fish's ability to use sound for navigation, predator avoidance, and communication. However, it could also increase their sensitivity to common background noises, which may disrupt the detection of more useful auditory information," said Bignami, who recently completed his PhD in Marine Biology and Fisheries at UM.

The study, a collaboration between UM and NOAA's Ocean Acidification Program at the Atlantic Oceanographic and Meteorological Laboratory in Miami, is the first to use micro-CT technology to examine otoliths while still inside the heads of the larval fish.

"This effect of ocean acidification represents a significant change to a key sensory system in fish. Although the ultimate ecological consequences still need to be determined, there is the potential for serious impact on important processes such as larval fish recruitment and fisheries replenishment in this species and perhaps other critical fisheries," Bignami added.

Article: Bignami S, Enochs I, Manzello D, Sponaugle S, Cowen RK (2013) Ocean acidification alters the otoliths of a pan-tropical fish species with implications for sensory function. Proceedings of the National Academy of Sciences USA. doi:10.1073/pnas.1301365110

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>