Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity and metabolic syndrome associated with impaired brain function in adolescents

03.09.2012
A new study by researchers at NYU School of Medicine reveals for the first time that metabolic syndrome (MetS) is associated with cognitive and brain impairments in adolescents and calls for pediatricians to take this into account when considering the early treatment of childhood obesity.

The study, funded by the National Institutes of Health under award number DK083537, and in part by award number 1ULIRR029892, from the National Center for Research Resources, appears online September 3 in Pediatrics.

As childhood obesity has increased in the U.S., so has the prevalence of metabolic syndrome – a constellation of three or more of five defined health problems, including abdominal obesity, low HDL (good cholesterol), high triglycerides, high blood pressure and pre-diabetic insulin resistance. Lead investigator Antonio Convit, MD, professor of psychiatry and medicine at NYU School of Medicine and a member of the Nathan Kline Research Institute, and colleagues have shown previously that metabolic syndrome has been linked to neurocognitive impairments in adults, but this association was generally thought to be a long-term effect of poor metabolism. Now, the research team has revealed even worse brain impairments in adolescents with metabolic syndrome, a group absent of clinically-manifest vascular disease and likely shorter duration of poor metabolism.

"The prevalence of MetS parallels the rise in childhood obesity," Dr. Convit said. "There are huge numbers of people out there who have problems with their weight. If those problems persist long enough, they will lead to the development of MetS and diabetes. As yet, there has been very little information available about what happens to the brain in the setting of obesity and MetS and before diabetes onset in children."

For the study, the researchers compared 49 adolescents with metabolic syndrome to 62 teens without the disorder. Of those who were not in the MetS group, 40 percent were considered overweight or obese, so while they were not in ideal health, they did not have three out of the five health issues needed to fall into the MetS group. The findings reported, therefore, are conservative and reflective of the real world.

Dr. Convit and colleagues balanced each group according to age, socioeconomic status, school grade, gender and ethnicity to ensure things like cultural differences in diet and access to quality healthcare did not cloud the data. They then conducted endocrine, MRI and neuropsychological evaluations on the adolescents and found that those classified as having MetS showed significantly lower math and spelling scores, as well as decreased attention span and mental flexibility. They also showed differences in brain structure and volume, presenting with smaller hippocampal volumes – involved in the learning and recall of new information, increased brain cerebrospinal fluid and reductions of microstructural integrity in major white matter tracts in the brain. The more MetS-characterizing health problems the participants had, the more profound the effect across the board.

"The kids with MetS took longer to do tasks, could not read as well and had poorer math scores," Dr. Convit said. "These findings indicate that kids with MetS do not perform well on things that are very relevant to school performance."

The researchers concluded that even a few years of problems with metabolism may cause brain complications. They suggest the adverse impact of MetS on brain function in children could be used by pediatricians as a powerful motivator to get families more involved in meaningful lifestyle change.

"Only now are pediatricians becoming aware of some of these issues," Dr. Convit explained. "Many pediatricians don't even take a blood pressure, and they certainly are not taking cholesterol levels and testing insulin resistance." He added that about one third of children who are obese have abnormal cholesterol levels and more than 40 percent of those who are really obese have insulin resistance. "Obesity in kids is sky-high. Nearly 40 percent of the U.S. population is considered obese. Parents need to understand that obesity has medical consequences, even in children, and some of those consequences may be impacting more than just the long term health of the cardiovascular system. We need to do what our grandmothers have told us all along: 'Eat well, don't overeat and try to move as much as possible.'"

Dr. Convit added that simple changes in daily routine would go a long way in preventing MetS – changes like walking more and taking the stairs. Future research is needed to determine whether the reductions in cognitive performance and structural brain abnormalities are reversible with significant weight loss, he explained.

"The take home message is that just being overweight and obese is already impacting your brain," Dr. Convit said. "Kids who are struggling with their weight and moving toward having MetS may have lower grades, which could ultimately lead to lower professional achievement in the long run. These are run-of-the-mill, garden-variety kids, not kids that came into the hospital because they were sick. It is imperative that we take obesity and physical activity seriously in children. In this country, we're taking away gym class in order to give children more class time in an effort to improve school performance, but that effort may be having the exact opposite effect."

Dr. Convit's focus on combating and raising awareness about the impact of childhood obesity led him to create the The BODY Project, a program that works with New York City schools and parents to evaluate students' height, weight, blood pressure, test for insulin resistance and record other measures of health, giving parents an overview of their child's health status. Simply receiving this report motivates visits to the pediatrician, meal-planning changes at home and other interventions to prevent MetS and obesity. The program has impacted more than 3,400 children since its creation four years ago.

"If we can help one kid not become diabetic, that's one kid's life we've saved," Dr. Convit said.

About NYU School of Medicine:

NYU School of Medicine is one of the nation's preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation's finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City's diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Jessica Guenzel | EurekAlert!
Further information:
http://www.nyumc.org
http://school.med.nyu.edu/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>