Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear magnetic resonance aids in drug design

20.05.2010
A new study by a team of researchers led by Jeffrey Peng, assistant professor of chemistry and biochemistry at the University of Notre Dame, is using Nuclear Magnetic Resonance (NMR), to move drug design into groundbreaking consideration of the dynamic flexibility of drugs and their targets.

The research, which was published by the Journal of the American Chemical Society, contributes to the growing attention given toward the shape-shifting movement of molecules, a feature that potentially could help drug designers overcome issues of resistance, transportation of drugs to targets and oral bioavailability.

"The new focus is that it's not enough just to look at the protein motion," Peng said. "Of course, we've studied protein motions for some time, as many disease-related proteins are flexible. But we've also realized that in order to impact drug discovery, we also have to look at the candidate drug molecule that is being designed, that is, the 'ligand.' It can move too."

Drug design involves iterative changes of a ligand to optimize its drug-like properties, which include, among other issues, the ability to cross biological membranes and bind specifically to a drug-target, usually a protein. The rules for doing this are well-established for rigid ligands, but much less so for flexible ligands, which turn out to be common starting points for many drug-targets.

"Understanding that lets us predict how flexibility can affect drug-like properties, and how that flexibility should be manipulated in drug design is still elusive," Peng said.

"We need experimental methods that can tell us, systematically, how architectural changes in the candidate drug molecule can change its flexibility relevant for drug-like properties. These methods would benefit not just one particular kind of disease but basically drug design in general," including therapies for cancer, AIDS and MRSA.

"The paper is a beginning of how to systematically understand how we should make ligand molecules, candidate drug molecules, floppy or not floppy, in order to best interfere with the target protein. For example, we can test the idea that some residual 'floppiness' in a drug may help it co-adapt with a protein target site that 'morphs' over time, on account of drug-resistant mutations. We can also study how drug 'floppiness' can affect its ability to cross biological membranes and reach its protein target."

Peng, who worked as a biophysicist at a pharmaceutical company for 10 years before he came to Notre Dame, said the study of flexibility-activity relationships (FARs) adds another dimension to the longstanding structure-activity relationships (SARs) that scientists have studied. Addressing the dynamism of both the target molecule and the drug molecule can provide important resources for drug designers.

"If you could know, atom by atom, which parts have to move and which do not have to move to bind to a target protein, that's information a chemist can use," he says. "They can change the ligand as chemists do, repeat the activity assay, and see if it has improved."

The research was funded by the National Institutes of Health and is part of a collaboration between the Peng laboratory and the laboratory of Felicia Etzkorn at Virginia Tech.

Contact: Jeffrey Peng, associate professor of chemistry and biochemistry, 574-631-2983, jpeng@nd.edu News

Jeffrey Peng | EurekAlert!
Further information:
http://www.nd.edu

Further reports about: NOTRE Nuclear biological membrane drug molecule

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>