Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NTU study shows puzzle games can improve mental flexibility


Want to improve your mental finesse? Playing a puzzle game like Cut the Rope could just be the thing you need.

A recent study by Nanyang Technological University (NTU) scientists showed that adults who played the physics-based puzzle video game Cut the Rope regularly, for as little as an hour a day, had improved executive functions.

Asst Prof Michael Patterson (left) with his PhD student Adam Oei, playing Cut the Rope on the tablet

The executive functions in your brain are important for making decisions in everyday life when you have to deal with sudden changes in your environment – better known as thinking on your feet.  An example would be when the traffic light turns amber and a driver has to decide in an instant if he will be able to brake in time or if it is safer to travel across the junction.

The video game study by Assistant Professor Michael D. Patterson and his PhD student Mr Adam Oei, tested four different games for the mobile platform, as their previous research had shown that different games trained different skills.

The games varied in their genres, which included a first person shooter (Modern Combat); arcade (Fruit Ninja); real-time strategy (StarFront Collision); and a complex puzzle (Cut the Rope).

NTU undergraduates, who were non-gamers, were then selected to play an hour a day, 5 days a week on their iPhone or iPod Touch. This video game training lasted for 4 weeks, a total of 20 hours.

Prof Patterson said students who played Cut the Rope, showed significant improvement on executive function tasks while no significant improvements were observed in those playing the other three games.

“This finding is important because previously, no video games have demonstrated this type of broad improvement to executive functions, which are important for general intelligence, dealing with new situations and managing multitasking,” said Prof Patterson, an expert in the psychology of video games.

“This indicates that while some games may help to improve mental abilities, not all games give you the same effect. To improve the specific ability you are looking for, you need to play the right game,” added Mr Oei.

The abilities tested in this study included how fast the players can switch tasks (an indicator of mental flexibility); how fast can the players adapt to a new situation instead of relying on the same strategy (the ability to inhibit prepotent or predominant responses); and how well they can focus on information while blocking out distractors or inappropriate responses (also known as the Flanker task in cognitive psychology).

Prof Patterson said the reason Cut the Rope improved executive function in their players was probably due to the game’s unique puzzle design. Strategies which worked for earlier levels would not work in later levels, and regularly forced the players to think creatively and try alternate solutions. This is unlike most other video games which keep the same general mechanics and goals, and just speed up or increase the number of items to keep track of. 

After 20 hours of game play, players of Cut the Rope could switch between tasks 33 per cent faster, were 30 per cent faster in adapting to new situations, and 60 per cent better in blocking out distractions and focusing on the tasks at hand than before training.

All three tests were done one week after the 52 students had finished playing their assigned game, to ensure that these were not temporary gains due to motivation or arousal effects.

The study will be published in the academic journal, Computers in Human Behavior, this August, but is available currently online. This is the first study that showed broad transfer to several different executive functions, further providing evidence the video games can be effective in training human cognition.

“This result could have implications in many areas such as educational, occupational and rehabilitative settings,” Prof Patterson said.

“In future, with more studies, we will be able to know what type of games improves specific abilities, and prescribe games that will benefit people aside from just being entertainment.”

In their previous study published last year in PloS One, a top academic journal, Prof Patterson and Mr Oei studied the effects mobile gaming had on 75 NTU undergraduates.

The non-gamers were instructed to play one of the following games: “match three” game Bejeweled, virtual life simulation game The Sims, and action shooter Modern Combat.

The study findings showed that adults who play action games improved their ability to track multiple objects in a short span of time, useful when driving during a busy rush hour; while other games improved the participants’ ability for visual search tasks, useful when picking out an item from a large supermarket.

Moving forward, the Prof Patterson is keen to look at whether there is any improvement from playing such games in experienced adult gamers and how much improvement one can make through playing games.

Lester Kok | AlphaGalileo

Further reports about: NTU Nanyang ability academic effects puzzle video game video games

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>