Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern United States could face more tamarisk invasion by century's end

17.09.2009
Models show habitat of the aggressive invasive plant likely will expand as temperature warms

If the future warming trends that scientists have projected are realized, one of the country's most aggressive exotic plants will have the potential to invade more U.S. land area, according to a new study published in the current issue of the journal Invasive Plant Science and Management. The study found that tamarisk—prevalent today in some parts of the region, but generally limited to warm and dry environments—could expand its range into currently uninvaded areas.

"Results of our study suggest that a little over 20 percent of the Northwest east of the Cascade Mountains supports suitable tamarisk habitat, but less than one percent of these areas is currently occupied by the species," said Becky Kerns, a research ecologist with the Western Wildland Environmental Threat Assessment Center (WWETAC) who led the study. "That means the remainder is highly vulnerable to invasion right now with the situation potentially getting worse as favorable conditions for tamarisk may expand under climate change."

These findings translate into a two- to ten-fold increase in highly suitable tamarisk habitat in Oregon, Washington, and Idaho by the end of the century.

Tamarisk, also known as "saltcedar," is a deciduous shrub or small tree that grows quickly, reproduces profusely, and tolerates drought and salty conditions, making it capable of easily displacing native species. It also sheds flammable leaves that serve as potential fuel, significantly increasing an area's wildfire risk. The plant was intentionally introduced to the West in the 1800s as an ornamental, windbreak, shade, and erosion control species and today can be found growing prolifically in the Northwest in the central Snake River Plain, Columbia Plateau, and Northern Basin and Range.

"Tamarisk is not a newcomer to the Northwest," Kerns said. "But most people are surprised that it is found here and that it forms extensive stands along certain portions of our arid waterways."

In the study, Kerns and her Forest Service and Oregon State University colleagues compiled distribution data for all species of tamarisk in the region and used the information to develop habitat suitability maps, which helped to identify those areas most susceptible to invasion. They then projected differences in habitat resulting from a changing climate to determine how the plant's habitat and distribution may change in the future.

Their projections indicated that, although most of the region maps as low habitat suitability for tamarisk, suitable and unoccupied habitat prone to invasion exists. Large, relatively uninvaded areas—including the Columbia, Okanagon, Yakima, upper John Day, Deschutes, lower Salmon, upper Owyhee, and lower Snake Rivers and their tributaries—appear to be especially vulnerable to infestation from adjacent populations.

"It's important to acknowledge that considerable uncertainty exists surrounding future climate change," Kerns said. "But our results provide a useful starting point for discussing the emerging threat of this highly invasive species in relation to climate change."

To read a summary of the study online, visit http://wssa.allenpress.com/perlserv/?request=get-abstract&doi

=10.1614%2FIPSM-08-120.1.

The WWETAC is part of the PNW Research Station, which is headquartered in Portland, Oregon. The station has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>