Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Northwestern United States could face more tamarisk invasion by century's end

Models show habitat of the aggressive invasive plant likely will expand as temperature warms

If the future warming trends that scientists have projected are realized, one of the country's most aggressive exotic plants will have the potential to invade more U.S. land area, according to a new study published in the current issue of the journal Invasive Plant Science and Management. The study found that tamarisk—prevalent today in some parts of the region, but generally limited to warm and dry environments—could expand its range into currently uninvaded areas.

"Results of our study suggest that a little over 20 percent of the Northwest east of the Cascade Mountains supports suitable tamarisk habitat, but less than one percent of these areas is currently occupied by the species," said Becky Kerns, a research ecologist with the Western Wildland Environmental Threat Assessment Center (WWETAC) who led the study. "That means the remainder is highly vulnerable to invasion right now with the situation potentially getting worse as favorable conditions for tamarisk may expand under climate change."

These findings translate into a two- to ten-fold increase in highly suitable tamarisk habitat in Oregon, Washington, and Idaho by the end of the century.

Tamarisk, also known as "saltcedar," is a deciduous shrub or small tree that grows quickly, reproduces profusely, and tolerates drought and salty conditions, making it capable of easily displacing native species. It also sheds flammable leaves that serve as potential fuel, significantly increasing an area's wildfire risk. The plant was intentionally introduced to the West in the 1800s as an ornamental, windbreak, shade, and erosion control species and today can be found growing prolifically in the Northwest in the central Snake River Plain, Columbia Plateau, and Northern Basin and Range.

"Tamarisk is not a newcomer to the Northwest," Kerns said. "But most people are surprised that it is found here and that it forms extensive stands along certain portions of our arid waterways."

In the study, Kerns and her Forest Service and Oregon State University colleagues compiled distribution data for all species of tamarisk in the region and used the information to develop habitat suitability maps, which helped to identify those areas most susceptible to invasion. They then projected differences in habitat resulting from a changing climate to determine how the plant's habitat and distribution may change in the future.

Their projections indicated that, although most of the region maps as low habitat suitability for tamarisk, suitable and unoccupied habitat prone to invasion exists. Large, relatively uninvaded areas—including the Columbia, Okanagon, Yakima, upper John Day, Deschutes, lower Salmon, upper Owyhee, and lower Snake Rivers and their tributaries—appear to be especially vulnerable to infestation from adjacent populations.

"It's important to acknowledge that considerable uncertainty exists surrounding future climate change," Kerns said. "But our results provide a useful starting point for discussing the emerging threat of this highly invasive species in relation to climate change."

To read a summary of the study online, visit


The WWETAC is part of the PNW Research Station, which is headquartered in Portland, Oregon. The station has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>