Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen from pollution, natural sources causes growth of toxic algae, study finds

07.02.2013
Nitrogen in ocean waters fuels the growth of two tiny but toxic phytoplankton species that are harmful to marine life and human health, warns a new study published in the Journal of Phycology.

Researchers from San Francisco State University found that nitrogen entering the ocean -- whether through natural processes or pollution -- boosts the growth and toxicity of a group of phytoplankton that can cause the human illness Amnesic Shellfish Poisoning.


This is a scanning electron micrograph of the phytoplankton species Pseudo-nitzschia cuspidata (the long, thin needle-like objects).

Credit: Brian Bill/NOAA

Commonly found in marine waters off the North American West Coast, these diatoms (phytoplankton cells) of the Pseudo-nitzschia genus produce a potent toxin called domoic acid. When these phytoplankton grow rapidly into massive blooms, high concentrations of domoic acid put human health at risk if it accumulates in shellfish. It can also cause death and illness among marine mammals and seabirds that eat small fish that feed on plankton.

"Regardless of its source, nitrogen has a powerful impact on the growth of phytoplankton that are the foundation of the marine food web, irrespective of whether they are toxic or not," said William Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies. "Scientists and regulators need to be aware of the implications of both natural and pollutant sources of nitrogen entering the sea."

Nitrogen can occur naturally in marine waters due to coastal upwelling, which draws cool, nutrient-rich water containing nitrate (the most stable form of nitrogen) from deeper depths into sunlit surface waters. Pollution, including agricultural runoff containing fertilizer and effluent from sewage plants, is also responsible for adding nitrogen, including ammonium and urea, to ocean waters, but in most regions these types of nitrogen occur at relatively low concentrations.

In laboratory studies, Cochlan and former graduate student Maureen Auro found that natural and pollution-caused nitrogen forms equally support the growth of the harmful Pseudo-nitzschia algae and cause the production of the domoic acid, but in all cases the natural form of nitrogen caused the most toxic cells.

They also found that these small diatoms became particularly toxic under low light levels – a condition that usually slows the growth of phytoplankton. The species, P. cuspidata, underwent an up to 50 fold increase in toxicity under low light levels compared to the conditions that are thought to normally favor phytoplankton growth.

Scientists already know that in some large-celled species of Pseudo-nitzschia their toxicity increases when the cells grow slower, but in previous studies the slowing of cellular growth was due to the limitation of vital nutrients, such as silicate. However Cochlan's latest study found that the toxicity of these small toxigenic diatoms is affected by the type of nitrogen they consume. He found that under low light levels -- leading to slow growth -- phytoplankton cells that were fed on naturally occurring nitrate were more toxic than cells that were fed on either urea or ammonium caused by pollution.

"Our results demonstrate that the reason for the growth of these specific harmful algal blooms off the coast of North America from British Columbia to California may in fact be due to totally natural causes," Cochlan said.

Such toxic algal blooms may be largely supported by the natural upwelling of nitrogen. However, Cochlan cautions that when the pattern of upwelling is weaker, nitrogen from pollution could play an important role in sustaining a "seed population" of harmful algae – a remnant that keeps the bloom going until upwelling resumes and the bloom is able to grow again and perhaps increase their toxic effect on the marine ecosystem.

"This is the first physiological study to look at the environmental conditions that promote both the growth and the toxicity of these small diatoms," Cochlan said. "The findings may shed light on why these microorganisms produce a potent neurotoxin and what the ecological advantage is for the phytoplankton producing it."

"Nitrogen Utilization and Toxin Production by Two Diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana," was published in the February 2013 issue of the Journal of Phycology. The paper was authored by Maureen E. Auro, a graduate of the marine biology master's program at SF State, and William P. Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies.

The study was funded by the National Science Foundation's Ecology and Oceanography of Harmful Algal Blooms program (ECOHAB).

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>