Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen from pollution, natural sources causes growth of toxic algae, study finds

07.02.2013
Nitrogen in ocean waters fuels the growth of two tiny but toxic phytoplankton species that are harmful to marine life and human health, warns a new study published in the Journal of Phycology.

Researchers from San Francisco State University found that nitrogen entering the ocean -- whether through natural processes or pollution -- boosts the growth and toxicity of a group of phytoplankton that can cause the human illness Amnesic Shellfish Poisoning.


This is a scanning electron micrograph of the phytoplankton species Pseudo-nitzschia cuspidata (the long, thin needle-like objects).

Credit: Brian Bill/NOAA

Commonly found in marine waters off the North American West Coast, these diatoms (phytoplankton cells) of the Pseudo-nitzschia genus produce a potent toxin called domoic acid. When these phytoplankton grow rapidly into massive blooms, high concentrations of domoic acid put human health at risk if it accumulates in shellfish. It can also cause death and illness among marine mammals and seabirds that eat small fish that feed on plankton.

"Regardless of its source, nitrogen has a powerful impact on the growth of phytoplankton that are the foundation of the marine food web, irrespective of whether they are toxic or not," said William Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies. "Scientists and regulators need to be aware of the implications of both natural and pollutant sources of nitrogen entering the sea."

Nitrogen can occur naturally in marine waters due to coastal upwelling, which draws cool, nutrient-rich water containing nitrate (the most stable form of nitrogen) from deeper depths into sunlit surface waters. Pollution, including agricultural runoff containing fertilizer and effluent from sewage plants, is also responsible for adding nitrogen, including ammonium and urea, to ocean waters, but in most regions these types of nitrogen occur at relatively low concentrations.

In laboratory studies, Cochlan and former graduate student Maureen Auro found that natural and pollution-caused nitrogen forms equally support the growth of the harmful Pseudo-nitzschia algae and cause the production of the domoic acid, but in all cases the natural form of nitrogen caused the most toxic cells.

They also found that these small diatoms became particularly toxic under low light levels – a condition that usually slows the growth of phytoplankton. The species, P. cuspidata, underwent an up to 50 fold increase in toxicity under low light levels compared to the conditions that are thought to normally favor phytoplankton growth.

Scientists already know that in some large-celled species of Pseudo-nitzschia their toxicity increases when the cells grow slower, but in previous studies the slowing of cellular growth was due to the limitation of vital nutrients, such as silicate. However Cochlan's latest study found that the toxicity of these small toxigenic diatoms is affected by the type of nitrogen they consume. He found that under low light levels -- leading to slow growth -- phytoplankton cells that were fed on naturally occurring nitrate were more toxic than cells that were fed on either urea or ammonium caused by pollution.

"Our results demonstrate that the reason for the growth of these specific harmful algal blooms off the coast of North America from British Columbia to California may in fact be due to totally natural causes," Cochlan said.

Such toxic algal blooms may be largely supported by the natural upwelling of nitrogen. However, Cochlan cautions that when the pattern of upwelling is weaker, nitrogen from pollution could play an important role in sustaining a "seed population" of harmful algae – a remnant that keeps the bloom going until upwelling resumes and the bloom is able to grow again and perhaps increase their toxic effect on the marine ecosystem.

"This is the first physiological study to look at the environmental conditions that promote both the growth and the toxicity of these small diatoms," Cochlan said. "The findings may shed light on why these microorganisms produce a potent neurotoxin and what the ecological advantage is for the phytoplankton producing it."

"Nitrogen Utilization and Toxin Production by Two Diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana," was published in the February 2013 issue of the Journal of Phycology. The paper was authored by Maureen E. Auro, a graduate of the marine biology master's program at SF State, and William P. Cochlan, senior research scientist at SF State's Romberg Tiburon Center for Environmental Studies.

The study was funded by the National Science Foundation's Ecology and Oceanography of Harmful Algal Blooms program (ECOHAB).

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>