Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST study of Colorado wildfire shows actions can change outcomes

10.11.2015

A new study of Colorado's devastating 2012 Waldo Canyon wildfire demonstrates that prompt and effective action can significantly change the outcome of fires that occur in areas where residential communities and undeveloped wildlands meet. The study by the U.S. Department of Commerce's National Institute of Standards and Technology (NIST) is the most comprehensive examination in history of a wildland urban interface (WUI) fire.

"WUI fires are very different from earthquakes, hurricanes and tornados where the hazard cannot be controlled," said NIST fire researcher and principal investigator Alexander Maranghides.


Photo taken during the 2012 Waldo Canyon wildland urban interface (WUI) fire showing homes in a Colorado Springs, Colo., neighborhood that were ignited as a result of structure-to-structure fire spread, a distinguishing characteristic of WUI fires.

Credit: Colorado Springs Fire Department

"Our study showed that WUI fires also are distinct from either urban or wildland fires alone. We provide strong evidence that defensive measures designed specifically for the wildland urban interface and administered early can significantly reduce destruction and damage."

For example, the study found that because the Waldo firefighters tailored their response to the specific WUI conditions, 75 percent of their attempts to extinguish ignited structures were successful and 79 percent of their efforts at fire containment were successful in preventing rampant fire spread.

... more about:
»Canyon »Colorado »NIST »earthquakes »wildfires

The details of the NIST study are described in a report released today in Washington, D.C., during the Fire Chiefs White House Roundtable on Climate Change Impacts at the Wildland Urban Interface.

The number of WUI fires, particularly in the western and southern regions of the United States, has grown as housing developments push into wilderness areas. According to the Bureau of Land Management's National Interagency Fire Center (NIFC), the 10 years since 2002 saw an annual average of nearly 71,000 WUI fires recorded and 1.9 million hectares (4.7 million acres) burned.

Today, more than 32 percent of U.S. housing units and one-tenth of all land with housing are situated in the nation's 89 million hectares (220 million acres) of WUI, putting approximately 72,000 communities and more than 120 million people at risk.

The physical and monetary toll from WUI fire destruction is staggering. The NIFC calculates that nearly 39,000 homes--more than 3,000 per year--were lost to wildfires from 2000-2012 and that federal, state and local agencies spent an average of $4.7 billion annually during that period on WUI fire suppression.

The Waldo Canyon WUI fire started on June 23, 2012, just southwest of Colorado Springs, Colo. By the time the blaze was declared contained on July 10, 2012, it left two people dead, destroyed 344 homes and damaged more than 100, burned 7,384 hectares (18,247 acres) and cost an estimated $454 million in insured losses.

The NIST study, conducted in collaboration with the U.S. Department of Agriculture's U.S. Forest Service (USFS) and the federal Joint Fire Science Program, documented and assessed the chronology, behavior and outcomes of the fire, as well the firefighting activity against it.

In their investigation, Maranghides and his colleagues focused on the Mountain Shadows community in Colorado Springs, the location for all of the homes destroyed in the Waldo Canyon fire. The scientific analysis of the fire's impact on Mountain Shadows and the effectiveness of defensive measures taken to suppress it took two years to complete. Researchers spent 4,500 hours on data collection, conducted more than 200 technical discussions with first responders and made more than 4,500 distinct fire and defensive action observations.

Along with the most detailed timeline for a WUI fire ever created, the Waldo Canyon investigation yielded 37 technical findings that served as the basis for 13 technical recommendations aimed at improving community resilience to wildfires.

Among the key findings:

  • WUI fire dynamics change rapidly and require special consideration.

    "For example, if your home is nestled deep within a neighborhood away from the leading edge of a fire, you might not be at risk early on," Maranghides said. "However, the danger to your home dramatically increases if a neighboring house, the surrounding landscape or a nearby vehicle catches on fire."

  • WUI fires create "cascading ignitions."

    The intensity, spread and destructive power of a WUI fire increases rapidly as more and more structures are ignited. In the Waldo Canyon fire study, the researchers found that only 48 of the destroyed homes were ignited directly from the wildfire. Structure-to-structure spread from these early ignitions resulted in the cascading ignition of the other 296 destroyed homes.

  • Defensive measures were very effective in suppressing burning structures and containing the Waldo Canyon fire because they took WUI conditions into account.

    First responders were able to contain fire spread or "box in" much of the fire because they effectively assessed fire behavior, exposure risks to structures from fire and embers, and potential responses by structures to the changing conditions.

  • There was not a nationally accepted system available for preplanning the response to the Waldo Canyon event.

    Although firefighter response to the fire was effective, the researchers believe that pre-fire planning could have further enhanced the effort. Unfortunately, there currently is not a nationally accepted system on how to do preplanning for WUI fires. Such planning requires an intimate understanding of exposure risks and vulnerabilities--both for individual structures and the community as a whole. To help first responders and others to gain this understanding, NIST is developing both an in-the-field, two-tiered system for collecting data after WUI fires and a WUI Hazard Scale for predicting and mapping the ranges of exposure risks to fire and embers from a WUI event throughout a community.

Among the key technical recommendations:

  • Fire departments should develop, plan, train and practice standard operating procedures for responding to WUI fires in their specific communities.

    These procedures should result from scientifically mapping a community's high- and low-risk areas of exposure to both the fire and embers generated during WUI events (as will be possible using the WUI Hazard Scale).

  • A "response time threshold" for WUI fires should be established for each community.

    Fire departments have optimal "time-to-response" standards for reaching urban fires. Similar thresholds can, and should be, set for WUI fires.

  • High-density structure-to-structure spacing in a community should be identified and considered in WUI fire response plans.

    In the Waldo Canyon fire, the majority of homes destroyed were ignited by fire and embers coming from other nearby residences already on fire. Based on this observation, the researchers concluded that structure spatial arrangements in a community must be a major consideration when planning for WUI fires.

NIST's work on WUI fires is part of its ongoing programs for enhancing disaster resilience by reducing the risks of fires, earthquakes, windstorms and coastal inundation on buildings, infrastructure and communities, including facility occupants/users and emergency responders.

###

As a non-regulatory agency of the U.S. Department of Commerce, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life. To learn more about NIST, visit http://www.nist.gov.

Media Contact

Michael E. Newman
michael.newman@nist.gov
301-975-3025

 @usnistgov

http://www.nist.gov 

Michael E. Newman | EurekAlert!

Further reports about: Canyon Colorado NIST earthquakes wildfires

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>