Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST study advances use of iris images as a long-term form of identification

21.08.2013
A new report* by biometric researchers at the National Institute of Standards and Technology (NIST) uses data from thousands of frequent travelers enrolled in an iris recognition program to determine that no consistent change occurs in the distinguishing texture of their irises for at least a decade. These findings inform identity program administrators on how often iris images need to be recaptured to maintain accuracy.

For decades, researchers seeking biometric identifiers other than fingerprints believed that irises were a strong biometric because their one-of-a-kind texture meets the stability and uniqueness requirements for biometrics. However, recent research has questioned that belief. A study of 217 subjects over a three-year period found that the recognition of the subjects' irises became increasingly difficult, consistent with an aging effect.**


A frequent traveler uses an iris recognition camera to speed her travel across the American-Canadian border. NIST researchers evaluated data from millions of images taken over a decade from this iris-based NEXUS program to gauge iris stability.

Credit: Canadian Border Services Agency

To learn more, NIST biometric researchers used several methods to evaluate iris stability.

Researchers first examined anonymous data from millions of transactions from NEXUS, a joint Canadian and American program used by frequent travelers to move quickly across the Canadian border. As part of NEXUS, members' irises are enrolled into the system with an iris camera and their irises are scanned and matched to system files when they travel across the border. NIST researchers also examined a larger, but less well-controlled set of anonymous statistics collected over a six-year period.

In both large-population studies, NIST researchers found no evidence of a widespread aging effect, said Biometric Testing Project Leader Patrick Grother. A NIST computer model estimates that iris recognition of average people will typically be useable for decades after the initial enrollment.

"In our iris aging study we used a mixed effects regression model, for its ability to capture population-wide aging and individual-specific aging, and to estimate the aging rate over decades," said Grother. "We hope these methods will be applicable to other biometric aging studies such as face aging because of their ability to represent variation across individuals who appear in a biometric system irregularly."

NIST researchers then reanalyzed the images from the earlier studies of 217 subjects that evaluated the population-wide aspect. Those studies reported an increase in false rejection rates over time—that is, the original, enrolled images taken in the first year of the study did not match those taken later. While the rejection numbers were high, the results did not necessarily demonstrate that the iris texture itself was changing. In fact, a study by another research team identified pupil dilation as the primary cause behind the false rejection rates.*** This prompted the NIST team to consider the issue.

NIST researchers showed that dilation in the original pool of subjects increased in the second year of the test and decreased the next, but was not able to determine why. When they accounted for the dilation effect, researchers did not observe a change in the texture or aging effect. Some iris cameras normalize dilation by using shielding or by varying the illumination.

NIST established the Iris Exchange (IREX) program in 2008 to give quantitative support to iris recognition standardization, development and deployment. Sponsors for this research include the Criminal Justice Information Systems Division of the Federal Bureau of Investigation, the Office of Biometric Identity Management in the Department of Homeland Security (DHS) and the DHS Science and Technology Directorate.

*The NIST results are reported in IREX VI – Temporal Stability of Iris Recognition Accuracy, NIST Interagency Report 7948, at http://www.nist.gov/manuscript-publication-search.cfm?pub_id=913900.
**S. Fenker and K.W. Bowyer. Experimental evidence of a template aging effect in iris biometrics. IEEE Computer Society Workshop on Applications of Computer Vision, November 2012.

***M. Fairhurst and M. Erbilek. Analysis of physical ageing effects in iris biometrics. IET Computer Vision, 5(6):358–366, 2011. www.ietdl.org.

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>