Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST study advances use of iris images as a long-term form of identification

21.08.2013
A new report* by biometric researchers at the National Institute of Standards and Technology (NIST) uses data from thousands of frequent travelers enrolled in an iris recognition program to determine that no consistent change occurs in the distinguishing texture of their irises for at least a decade. These findings inform identity program administrators on how often iris images need to be recaptured to maintain accuracy.

For decades, researchers seeking biometric identifiers other than fingerprints believed that irises were a strong biometric because their one-of-a-kind texture meets the stability and uniqueness requirements for biometrics. However, recent research has questioned that belief. A study of 217 subjects over a three-year period found that the recognition of the subjects' irises became increasingly difficult, consistent with an aging effect.**


A frequent traveler uses an iris recognition camera to speed her travel across the American-Canadian border. NIST researchers evaluated data from millions of images taken over a decade from this iris-based NEXUS program to gauge iris stability.

Credit: Canadian Border Services Agency

To learn more, NIST biometric researchers used several methods to evaluate iris stability.

Researchers first examined anonymous data from millions of transactions from NEXUS, a joint Canadian and American program used by frequent travelers to move quickly across the Canadian border. As part of NEXUS, members' irises are enrolled into the system with an iris camera and their irises are scanned and matched to system files when they travel across the border. NIST researchers also examined a larger, but less well-controlled set of anonymous statistics collected over a six-year period.

In both large-population studies, NIST researchers found no evidence of a widespread aging effect, said Biometric Testing Project Leader Patrick Grother. A NIST computer model estimates that iris recognition of average people will typically be useable for decades after the initial enrollment.

"In our iris aging study we used a mixed effects regression model, for its ability to capture population-wide aging and individual-specific aging, and to estimate the aging rate over decades," said Grother. "We hope these methods will be applicable to other biometric aging studies such as face aging because of their ability to represent variation across individuals who appear in a biometric system irregularly."

NIST researchers then reanalyzed the images from the earlier studies of 217 subjects that evaluated the population-wide aspect. Those studies reported an increase in false rejection rates over time—that is, the original, enrolled images taken in the first year of the study did not match those taken later. While the rejection numbers were high, the results did not necessarily demonstrate that the iris texture itself was changing. In fact, a study by another research team identified pupil dilation as the primary cause behind the false rejection rates.*** This prompted the NIST team to consider the issue.

NIST researchers showed that dilation in the original pool of subjects increased in the second year of the test and decreased the next, but was not able to determine why. When they accounted for the dilation effect, researchers did not observe a change in the texture or aging effect. Some iris cameras normalize dilation by using shielding or by varying the illumination.

NIST established the Iris Exchange (IREX) program in 2008 to give quantitative support to iris recognition standardization, development and deployment. Sponsors for this research include the Criminal Justice Information Systems Division of the Federal Bureau of Investigation, the Office of Biometric Identity Management in the Department of Homeland Security (DHS) and the DHS Science and Technology Directorate.

*The NIST results are reported in IREX VI – Temporal Stability of Iris Recognition Accuracy, NIST Interagency Report 7948, at http://www.nist.gov/manuscript-publication-search.cfm?pub_id=913900.
**S. Fenker and K.W. Bowyer. Experimental evidence of a template aging effect in iris biometrics. IEEE Computer Society Workshop on Applications of Computer Vision, November 2012.

***M. Fairhurst and M. Erbilek. Analysis of physical ageing effects in iris biometrics. IET Computer Vision, 5(6):358–366, 2011. www.ietdl.org.

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>