Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST residential fire study education kit now available

30.09.2010
Researchers from the National Institute of Standards and Technology (NIST) and the International Association of Fire Fighters have prepared an educational resource for fire chiefs, firefighters, and public officials to summarize and explain the key results of a landmark study on the effect of the size of firefighting crews on the ability of the fire service to protect lives and property in residential fires.

The study, Report on Residential Fireground Field Experiments, was published by NIST last April. The study is the first to quantify the effects of crew sizes and arrival times on the fire service's lifesaving and firefighting operations for residential fires. Little scientific data on the topic had been previously available.

The research demonstrated that four-person firefighting crews were able to complete 22 essential firefighting and rescue tasks in a typical residential structure 30 percent faster than two-person crews and 25 percent faster than three-person crews. (More information on the study is available at http://www.nist.gov/bfrl/fire_research/residential-fire-report_042810.cfm.)

"The results from this rigorous scientific study on the most common and deadly fire scenarios in the country—those in single-family residences—provide quantitative data to fire chiefs and public officials responsible for determining safe staffing levels, station locations and appropriate funding for community and firefighter safety," says NIST's Jason Averill, one of the study's principal investigators.

... more about:
»Association »FIRE »Fireground »NIST »crew size

The educational toolkit was developed to provide policymakers with a quantitative and qualitative understanding of the research. The toolkit was funded by the Federal Emergency Management Agency's Assistance to Firefighters (FIRE Act) grant program. The toolkit contains a bound copy of the report, a brochure of the executive summary for use in public meetings, a DVD with side-by-side video comparing the timing of various tasks for different crew sizes, fact sheets on key findings, time-to-task results, and results on the effect of crew size on the time to apply water on a fire, the fire growth rate, and occupant exposure to toxins. A press release describing the study, stakeholder quotes, and public statements by principal investigators are also included in the toolkit.

The toolkit may be requested by sending email to shildebrant@iaff.org or jason.averill@nist.gov. The partner organizations contributing to this study— the International Association of Fire Chiefs, the Commission on Fire Accreditation International, and Worcester Polytechnic Institute—also will make the toolkits available.

The Report on Residential Fireground Field Experiments, NIST Technical Note 1661, can be downloaded at: (http://www.nist.gov/manuscript-publication-search.cfm?pub_id=904607).

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Association FIRE Fireground NIST crew size

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>