Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH study suggests that early detection is possible for prion diseases

03.12.2010
A fast test to diagnose fatal brain conditions such as mad cow disease in cattle and Creutzfeldt-Jakob disease in humans could be on the horizon, according to a new study from National Institutes of Health scientists. Researchers at NIH's National Institute of Allergy and Infectious Diseases (NIAID) have developed a highly sensitive and rapid new method to detect and measure infectious agents called prions that cause these diseases.

"Although relatively rare in humans and other animals, prion diseases are devastating to those infected and can have huge economic impacts," says Anthony S. Fauci, M.D., director of NIAID. "Scientists have promising concepts for developing therapies for people infected with prion diseases, but treatments only are helpful if it is known who needs them. This detection model could eventually bridge that gap."

Prion diseases are primarily brain-damaging conditions also known as transmissible spongiform encephalopathies. They are difficult to diagnose, untreatable and ultimately fatal. A key physical characteristic of these diseases is dead tissue that leaves sponge-like holes in the brain. Prion diseases include mad cow disease, or bovine spongiform encephalopathy in cattle; scrapie in sheep; Creutzfeldt-Jakob disease in humans; and chronic wasting disease in deer, elk and moose. For more information about NIAID research on prion diseases, visit the NIAID Prion Diseases portal.

Currently available diagnostic tests lack the sensitivity, speed or quantitative capabilities required for many important applications in medicine, agriculture, wildlife biology and research. Because prion infections can be present for decades before disease symptoms appear, a better test might create the possibility for early treatment to stop the spread of disease and prevent death.

Now, a blending of previous test concepts by the NIAID group has led to the development of a new prion detection method, called real time quaking induced conversion assay, or RT-QuIC. This approach is described in a paper now online in the open-access journal PLoS Pathogens. Byron Caughey, Ph.D., led the study at NIAID's Rocky Mountain Laboratories in Hamilton, Mont.

Scientists believe disease-causing prions are abnormal infectious clusters of prion protein molecules. Normally, prion protein molecules are unclustered, harmless and found in every mammal. In a process not fully understood, abnormal infectious clusters develop and can convert normal prion protein molecules into the infectious prion form; these clusters tend to gather in the brain. Ongoing replication allows the disease to spread and damage the brain.

Infectious prions also are found outside the brain, in saliva, blood, breast milk, urine and the nasal and cerebral spinal fluids used in the study. But the concentrations of infectious prions in these bodily fluids are so low that scientists, clinicians and wildlife biologists have not been able to measure them for routine purposes.

The new assay can detect when miniscule amounts of infectious prions initiate the conversion of large amounts of normal prion protein into an abnormal form in test-tube reactions. By comparing the extent to which different samples can be diluted and still initiate conversion, scientists can estimate the relative infectious concentrations in the original samples. In their study, the NIAID scientists used RT-QuIC to detect prion infections in deer known to have chronic wasting disease and sheep known to have scrapie. In scrapie-infected hamsters, they found surprisingly high levels of prions in nasal fluids, pointing to such fluids as possible sources of contagion in various prion diseases.

Along with optimizing their existing applications in the laboratory, Dr. Caughey and his colleagues are teaming up with a number of other laboratories around the world to extend the practical and scientific applications of RT-QuIC. Related testing approaches might also aid the diagnoses of similar neurodegenerative protein diseases, such as Alzheimer's, Huntington's and Parkinson's diseases.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Reference: J Wilham et al. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathogens 6(12): e1001217. DOI: 10.1371/journal.ppat.1001217 (2010).

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>