Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH study sheds light on how to reset the addicted brain

04.04.2013
Research suggests that targeted stimulation of the brain’s prefrontal cortex is a promising treatment for addiction
Could drug addiction treatment of the future be as simple as an on/off switch in the brain? A study in rats has found that stimulating a key part of the brain reduces compulsive cocaine-seeking and suggests the possibility of changing addictive behavior generally. The study, published in Nature, was conducted by scientists at the Intramural Research Program of the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health, and the University of California, San Francisco.

"This exciting study offers a new direction of research for the treatment of cocaine and possibly other addictions," said NIDA Director Dr. Nora D. Volkow. "We already knew, mainly from human brain imaging studies, that deficits in the prefrontal cortex are involved in drug addiction. Now that we have learned how fundamental these deficits are, we feel more confident than ever about the therapeutic promise of targeting that part of the brain."

Compulsive drug-taking, despite negative health and social consequences, has been the most difficult challenge in human drug addiction. NIDA researchers used an animal model of cocaine addiction, in which some rats exhibited addictive behavior by pushing levers to get cocaine even when followed by a mild electric shock to the foot. Other rats did not exhibit addictive responses.

The NIDA scientists compared nerve cell firing patterns in both groups of rats by examining cells from the prefrontal cortex. They determined that cocaine produced greater functional brain deficits in the addicted rats. Scientists then used optogenetic techniques on both groups of rats -- essentially shining a light onto modified cells to increase or lessen activity in that part of the brain. In the addicted rats, activating the brain cells (thereby removing the deficits) reduced cocaine-seeking. In the non-addicted rats, deactivating the brain cells (thereby creating the deficits) increased compulsive cocaine seeking.

"This is the first study to show a cause-and-effect relationship between cocaine-induced brain deficits in the prefrontal cortex and compulsive cocaine-seeking," said NIDA's Dr. Billy Chen, first author of the study. "These results provide evidence for a cocaine-induced deficit within a brain region that is involved in disorders characterized by poor impulse control, including addiction."

"What I find to be an exceptional breakthrough is that our results can be immediately translated to clinical research settings with humans, and we are planning clinical trials to stimulate this brain region using non-invasive methods," said Dr. Antonello Bonci, NIDA scientific director and senior author of the study. "By targeting a specific portion of the prefrontal cortex, our hope is to reduce compulsive cocaine-seeking and craving in patients."

In 2011, there were an estimated 1.4 million Americans age 12 and older who were current (past-month) cocaine users, according to the National Survey on Drug Use and Health. However, there are currently no medications approved by the U.S. Food and Drug Administration for the treatment of cocaine addiction.

The study by Chen et al. can be found at: http://www.nature.com/. For information on related research being conducted at NIDA's Intramural Research Program, go to http://irp.drugabuse.gov/Bonci.php.

Contact:
NIDA Press Office
301-443-6245
media@nida.nih.gov

About the National Institute on Drug Abuse (NIDA): NIDA is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world's research on the health aspects of drug abuse and addiction. The Institute carries out a large variety of programs to inform policy and improve practice. Fact sheets on the health effects of drugs of abuse and information on NIDA research and other activities can be found on the NIDA home page at www.drugabuse.gov. To order publications in English or Spanish, call NIDA's new DrugPubs research dissemination center at 1-877-NIDA-NIH or 240-645-0228 (TDD) or fax or email requests to 240-645-0227 or drugpubs@nida.nih.gov. Online ordering is available at drugpubs.drugabuse.gov. NIDA's media guide can be found at www.drugabuse.gov/publications/media-guide, and its new easy-to-read website can be found at www.easyread.drugabuse.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Press Office | EurekAlert!
Further information:
http://www.nida.nih.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>