Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH study finds Avastin and Lucentis are equally effective in treating age-related macular degeneration

29.04.2011
Researchers are reporting results from the first year of a two-year clinical trial that Avastin, a drug approved to treat some cancers and that is commonly used off-label to treat age-related macular degeneration (AMD), is as effective as the Food and Drug Administration-approved drug Lucentis for the treatment of AMD.

The report, from the Comparison of AMD Treatments Trials (CATT), was published online today in the New England Journal of Medicine. CATT is funded by the National Eye Institute (NEI), a part of the National Institutes of Health.

"Over 250,000 patients are treated each year for AMD, and a substantial number of them receive Avastin. Given the lack of efficacy data regarding Avastin for AMD treatment, the NEI had an obligation to patients and clinicians to conduct this study," said Paul A. Sieving, M.D., Ph.D., director of the NEI.

AMD is the leading cause of vision loss and blindness in older Americans. In its advanced stages, the wet form of AMD spurs the growth of abnormal blood vessels, which leak fluid and blood into the macula and obscure vision. The macula is the central portion of the retina that allows us to look straight ahead and to perceive fine visual detail. Accumulation of fluid and blood damages the macula, causing loss of central vision. AMD can severely impede mobility and independence. Many patients are unable to drive, read, recognize faces or perform tasks that require hand-eye coordination.

Genentech, the maker of both drugs, originally developed Avastin to prevent blood vessel growth that enables cancerous tumors to develop and spread. In 2004, the FDA approved Avastin for the systemic treatment of metastatic colon cancer. Genentech later developed Lucentis, derived from a protein similar to Avastin, specifically for injection in the eye to block blood vessel growth in AMD.

In 2005, two Genentech-sponsored clinical trials established Lucentis as highly effective for the treatment of wet AMD. During the year between the announcement of the trial results and the release of Lucentis, ophthalmologists began injecting AMD patients with low doses of Avastin, due to its similarity to Lucentis and its availability. The FDA has not licensed Avastin for the treatment of AMD.

Numerous physicians noted a beneficial treatment effect and Avastin's use grew rapidly despite the lack of data on safety, efficacy and dosing from randomized clinical trials to support its use. Ophthalmologists used Avastin primarily as needed, or pro re nata (PRN), when there was evidence of active disease. The FDA approved Lucentis in 2006. However, most clinicians adopted PRN dosing for Lucentis, which was a departure from FDA-approved labeling and the monthly dosing schedule evaluated in the Genentech-sponsored clinical trials. It was not known if PRN dosing would produce the same long term vision benefits that were achieved with monthly administration.

NEI launched CATT in 2008 to compare Lucentis and Avastin for treatment of wet AMD. The study has now reported results for 1,185 patients treated at 43 clinical centers in the United States. Patients were randomly assigned and treated with one of four regimens for a year. They received Lucentis monthly or PRN, or Avastin monthly or PRN. Enrollment criteria required that study participants had active disease.

Patients in the monthly dosing groups received an initial treatment and then had an injection every 28 days. Patients in the PRN groups received an initial treatment and were then examined every 28 days to determine medical need for additional treatment. PRN groups received subsequent treatment when there were signs of disease activity, such as fluid in the retina. Ophthalmologists involved in patient care did not know which study drug a patient was getting, to make sure that the data was not affected by how anyone felt about the treatment.

Change in visual acuity served as the primary outcome measure for CATT. Thus far, visual acuity improvement was virtually identical (within one letter difference on an eye chart) for either drug when given monthly. In addition, no difference was found in the percentage of patients who had an important gain or loss in visual function. Also, when each drug was given on a PRN schedule, there also was no difference (within one letter) between drugs. PRN dosing required four to five fewer injections per year than monthly treatment. Visual gains were about two letters less with PRN than with monthly treatment but overall visual results were still excellent.

"In addition to the primary finding of equivalence between Lucentis and Avastin for visual acuity, CATT also demonstrates that PRN dosing is a viable treatment option for either of these drugs," said Daniel F. Martin M.D., study chair for CATT and chairman of the Cole Eye Institute at the Cleveland Clinic. "Substantial visual acuity gains may be accomplished with a lower treatment burden."

Adverse events indicate development or worsening of a medical condition. They may or may not be causally associated with the clinical trial treatment, but they are always monitored and reported in any clinical trial. The median age of patients in CATT was over 80 years, and a high rate of hospitalizations might be anticipated as a result of chronic or acute medical conditions more common to older populations.

Serious adverse events (primarily hospitalizations) occurred at a 24 percent rate for patients receiving Avastin and a 19 percent rate for patients receiving Lucentis. These events were distributed across many different conditions, most of which were not associated with Avastin in cancer clinical trials where the drug was administered at 500 times the dose used for AMD. The number of deaths, heart attacks, and strokes were low and similar for both drugs during the study. CATT was not capable of determining whether there is an association between a particular adverse event and treatment. Differences in serious adverse event rates require further study.

Investigators in the CATT study will continue to follow patients through a second year of treatment. These additional data will provide information on longer-term effects of the drugs on vision and safety.

The FDA has not evaluated data from the CATT trial.

Find more information about this clinical trial (NCT00593450) at www.clinicaltrials.gov

The National Eye Institute, part of the National Institutes of Health, leads the federal government’s research on the visual system and eye diseases. NEI supports basic and clinical science programs that result in the development of sight-saving treatments. For more information, visit www.nei.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Jean Horrigan | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>