Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH study finds Avastin and Lucentis are equally effective in treating age-related macular degeneration

29.04.2011
Researchers are reporting results from the first year of a two-year clinical trial that Avastin, a drug approved to treat some cancers and that is commonly used off-label to treat age-related macular degeneration (AMD), is as effective as the Food and Drug Administration-approved drug Lucentis for the treatment of AMD.

The report, from the Comparison of AMD Treatments Trials (CATT), was published online today in the New England Journal of Medicine. CATT is funded by the National Eye Institute (NEI), a part of the National Institutes of Health.

"Over 250,000 patients are treated each year for AMD, and a substantial number of them receive Avastin. Given the lack of efficacy data regarding Avastin for AMD treatment, the NEI had an obligation to patients and clinicians to conduct this study," said Paul A. Sieving, M.D., Ph.D., director of the NEI.

AMD is the leading cause of vision loss and blindness in older Americans. In its advanced stages, the wet form of AMD spurs the growth of abnormal blood vessels, which leak fluid and blood into the macula and obscure vision. The macula is the central portion of the retina that allows us to look straight ahead and to perceive fine visual detail. Accumulation of fluid and blood damages the macula, causing loss of central vision. AMD can severely impede mobility and independence. Many patients are unable to drive, read, recognize faces or perform tasks that require hand-eye coordination.

Genentech, the maker of both drugs, originally developed Avastin to prevent blood vessel growth that enables cancerous tumors to develop and spread. In 2004, the FDA approved Avastin for the systemic treatment of metastatic colon cancer. Genentech later developed Lucentis, derived from a protein similar to Avastin, specifically for injection in the eye to block blood vessel growth in AMD.

In 2005, two Genentech-sponsored clinical trials established Lucentis as highly effective for the treatment of wet AMD. During the year between the announcement of the trial results and the release of Lucentis, ophthalmologists began injecting AMD patients with low doses of Avastin, due to its similarity to Lucentis and its availability. The FDA has not licensed Avastin for the treatment of AMD.

Numerous physicians noted a beneficial treatment effect and Avastin's use grew rapidly despite the lack of data on safety, efficacy and dosing from randomized clinical trials to support its use. Ophthalmologists used Avastin primarily as needed, or pro re nata (PRN), when there was evidence of active disease. The FDA approved Lucentis in 2006. However, most clinicians adopted PRN dosing for Lucentis, which was a departure from FDA-approved labeling and the monthly dosing schedule evaluated in the Genentech-sponsored clinical trials. It was not known if PRN dosing would produce the same long term vision benefits that were achieved with monthly administration.

NEI launched CATT in 2008 to compare Lucentis and Avastin for treatment of wet AMD. The study has now reported results for 1,185 patients treated at 43 clinical centers in the United States. Patients were randomly assigned and treated with one of four regimens for a year. They received Lucentis monthly or PRN, or Avastin monthly or PRN. Enrollment criteria required that study participants had active disease.

Patients in the monthly dosing groups received an initial treatment and then had an injection every 28 days. Patients in the PRN groups received an initial treatment and were then examined every 28 days to determine medical need for additional treatment. PRN groups received subsequent treatment when there were signs of disease activity, such as fluid in the retina. Ophthalmologists involved in patient care did not know which study drug a patient was getting, to make sure that the data was not affected by how anyone felt about the treatment.

Change in visual acuity served as the primary outcome measure for CATT. Thus far, visual acuity improvement was virtually identical (within one letter difference on an eye chart) for either drug when given monthly. In addition, no difference was found in the percentage of patients who had an important gain or loss in visual function. Also, when each drug was given on a PRN schedule, there also was no difference (within one letter) between drugs. PRN dosing required four to five fewer injections per year than monthly treatment. Visual gains were about two letters less with PRN than with monthly treatment but overall visual results were still excellent.

"In addition to the primary finding of equivalence between Lucentis and Avastin for visual acuity, CATT also demonstrates that PRN dosing is a viable treatment option for either of these drugs," said Daniel F. Martin M.D., study chair for CATT and chairman of the Cole Eye Institute at the Cleveland Clinic. "Substantial visual acuity gains may be accomplished with a lower treatment burden."

Adverse events indicate development or worsening of a medical condition. They may or may not be causally associated with the clinical trial treatment, but they are always monitored and reported in any clinical trial. The median age of patients in CATT was over 80 years, and a high rate of hospitalizations might be anticipated as a result of chronic or acute medical conditions more common to older populations.

Serious adverse events (primarily hospitalizations) occurred at a 24 percent rate for patients receiving Avastin and a 19 percent rate for patients receiving Lucentis. These events were distributed across many different conditions, most of which were not associated with Avastin in cancer clinical trials where the drug was administered at 500 times the dose used for AMD. The number of deaths, heart attacks, and strokes were low and similar for both drugs during the study. CATT was not capable of determining whether there is an association between a particular adverse event and treatment. Differences in serious adverse event rates require further study.

Investigators in the CATT study will continue to follow patients through a second year of treatment. These additional data will provide information on longer-term effects of the drugs on vision and safety.

The FDA has not evaluated data from the CATT trial.

Find more information about this clinical trial (NCT00593450) at www.clinicaltrials.gov

The National Eye Institute, part of the National Institutes of Health, leads the federal government’s research on the visual system and eye diseases. NEI supports basic and clinical science programs that result in the development of sight-saving treatments. For more information, visit www.nei.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Jean Horrigan | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>