Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In NIH-funded study, researchers uncover step in brain events leading up to addiction

16.08.2010
Findings represent additional clues to help predict vulnerability to drug abuse

A regulatory protein best known for its role in a rare genetic brain disorder also may play a critical role in cocaine addiction, according to a recent study in rats, funded by the National Institute on Drug Abuse (NIDA), a component of the National Institutes of Health. The study was published today in the journal Nature Neuroscience.

Researchers at the Scripps Research Institute in Jupiter, Fla. found that cocaine consumption increased levels of a regulatory protein called MeCP2 that shuttles back to the nucleus to influence gene expression in the brains of rats. As levels of MeCP2 increased in the brain, so did the animals' motivation to self-administer cocaine. This suggests that MeCP2 plays a crucial role in regulating cocaine intake in rats and perhaps in determining vulnerability to addiction.

"This discovery, using an animal model of addiction, has exposed an important effect of cocaine at the molecular level that could prove key to understanding compulsive drug taking," said Dr. Nora D. Volkow, director of NIDA. "It should open up new avenues of research on the causes and ways to counter the behavioral changes linked to addiction in humans."

This is the second time this year that a critical factor related to cocaine self-administration in rodents has been identified. In a study published in July in the journal Nature, Scripps researchers identified regulatory molecule miRNA-212 as playing a key role in cocaine intake. However, MeCP2 increased motivation for cocaine, whereas miRNA-212 had the opposite effect, suggesting that the latter plays a protective role against drug seeking.

In the current study, researchers discovered that the brain's balance between MeCP2 and miRNA-212 ultimately regulates cocaine intake. When the balance shifts toward MeCP2, cocaine intake increases. When the balance shifts toward miRNA-212, cocaine intake decreases. What determines the balance is not yet understood, however, and will be the focus of future research.

"This study represents another piece in the puzzle of determining vulnerability to cocaine addiction," said Paul J. Kenny, senior author on the study and an associate professor at Scripps. "If we can continue putting the pieces together, we may be able to determine whether there are viable treatments for this condition."

The study, authored by Heh-In Im et al., can be found online at http://www.nature.com/neuro/journal/vaop/ncurrent/index.html

The National Institute on Drug Abuse is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world's research on the health aspects of drug abuse and addiction. The Institute carries out a large variety of programs to inform policy and improve practice. Fact sheets on the health effects of drugs of abuse and information on NIDA research and other activities can be found on the NIDA home page at www.drugabuse.gov. To order publications in English or Spanish, call NIDA's new DrugPubs research dissemination center at 1-877-NIDA-NIH or 240-645-0228 (TDD) or fax or email requests to 240-645-0227 or drugpubs@nida.nih.gov. Online ordering is available at http://drugpubs.drugabuse.gov. NIDA's new media guide can be found at http://drugabuse.gov/mediaguide.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary Federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases.

NIDA Press Office | EurekAlert!
Further information:
http://www.nida.nih.gov
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>