Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Identified Antibodies May Improve Pneumonia Vaccine Design

23.09.2011
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how a novel type of antibody works against pneumococcal bacteria. The findings, which could improve vaccines against pneumonia, appear in the September/October issue of mBio, the online journal of the American Society for Microbiology.
Until recently, scientists thought that antibodies work against pneumococcal bacteria by killing them with the help of immune cells. However, several years ago, Einstein researchers discovered antibodies that were very effective against experimental pneumococcal disease in mice even though they were not able to induce bacterial killing by immune cells.

In the current study, the researchers examined how these antibodies interact with pneumococcal bacteria and found that they cause the bacteria to clump together, enhancing a phenomenon called quorum sensing.

"Quorum sensing is a way that bacteria communicate with one another," explained senior author Liise-anne Pirofski, M.D., professor of medicine and of microbiology & immunology, chief of infectious diseases at Einstein and Montefiore Medical Center, the University Hospital for Einstein, and the Selma and Dr. Jacques Mitrani Professor in Biomedical Research at Einstein. "Here, the ability of antibodies to enhance quorum sensing causes the bacteria to express genes that could kill some of their siblings, something called fratricide, and weaken the defense mechanisms that enable bacteria to survive and grow in a hostile environment."

The National Foundation for Infectious Diseases estimates that 175,000 people are hospitalized with pneumococcal pneumonia in the United States each year. In addition, pneumococcal bacteria cause 34,500 bloodstream infections and 2,200 cases of meningitis annually.

There are two pneumococcal vaccines: one for adults and one for infants and children. The pediatric pneumococcal conjugate vaccine has dramatically reduced the incidence of pneumococcal disease in children and adults by protecting vaccinated children and by reducing person-to-person transmission of the bacterium, (a phenomenon known as herd protection). However, the vaccine doesn't cover all strains of disease-causing pneumococcus, and the vaccine currently used for adults does not prevent pneumonia. Fortifying current pneumococcal vaccines to stimulate antibodies that make pneumococcal bacteria less able to protect themselves — or kill them directly — could enhance their effectiveness.

The paper is titled "Antibodies to Streptococcus pneumoniae Capsular Polysaccharide Enhance Pneumococcal Quorum Sensing." Co-authors include lead author Masahide Yano, Ph.D, Shruti Gohil, M.D., J. Robert Coleman, Ph.D., and Ph.D. candidate Catherine Manix, all of Einstein. The research was supported by research and training grants from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>