Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Do Newborns First Feel Cold?

18.06.2010
Cold sensing neural circuits in newborn mice take around two weeks to become fully active, according to a new study.

The finding adds to understanding of the cold sensing protein TRPM8 (pronounced trip-em-ate), first identified in a Nature paper in 2002 by USC College professor David McKemy.

McKemy’s study, published online by Neuroscience, shows that the cold sensing circuit starts to develop in utero but does not mature until well after birth.

“About three or four days before the animal is born, the protein is expressed. However, the axons of these nerves going into the spinal cord are not fully formed until probably two weeks after birth,” said McKemy, an assistant professor of neurobiology.

The delay in development of cold sensing is plausible, McKemy added.

“In the womb, when would we ever feel cold?”

By contrast, mice are born with a keen sense of smell, which they need to breast feed successfully.

Direct study of the cold sensing protein TRPM8 in humans is not yet possible. While sensory development differs in mice and humans - mice are born blind, for example - the study suggests a possible biological basis for findings of altered cold sensitivity in premature infants.

In a 2008 study of temperature sensation by the Institute of Child Health at University College London, researchers found that 11-year-old children born prematurely were less sensitive to temperature than those born at term.

“This is consistent with our observations that the circuitry is not fully developed until after birth, thus anything that disrupts this formation at this important stage could have long-term effects,” McKemy noted.

“There are other reports that injury and inflammation in rodent models that occur during the [prenatal] period lead to altered temperature sensitivity as well as altered neural circuits.”

The USC researchers tracked development of cold sensing through mice genetically engineered to express a green fluorescent protein whenever TRPM8 was produced.

TRPM8 is one in a class of proteins known as ion channels. Their purpose is to “turn on the cell” when they receive a stimulus. TRPM8 senses both painful cold and the soothing cold of menthol-based creams.

How one protein can convey both sensations is unknown. McKemy speculated that neurons differ in their internal architecture, with each tuned to accept either painful or pleasant cold signals from TRPM8.

One goal of TRPM8 research is to understand the molecular mechanisms of sensation, in the hope of developing better drugs for relief of chronic pain states, such as the extreme sensitivity to cold experienced by some diabetes patients.

“If you want to understand conditions like cold allodynia, which is cold pain, you need to find exactly what are the targets,” McKemy said.

“If we understand the basic nuts and bolts of the molecules and neurons and how they detect pain normally,” McKemy said, “then perhaps we can figure out why we detect pain when we shouldn’t.”

For a demonstration of how mice lacking TRPM8 lose much of their cold sensitivity, view the video at http://www.nature.com/nature/journal/v448/n7150/suppinfo/nature05910.html

McKemy’s collaborators on the study were first author Yoshio Takashima, now a postdoctoral researcher at Carnegie Mellon University, and Le Ma, assistant professor of cell and neurobiology at the Keck School of Medicine of USC.

The National Institutes of Health funded the research.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: McKemy Newborns TRPM8 USC cold fusion health services molecular mechanism

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>