Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newborn infants learn while asleep; study may lead to later disability tests

Sleeping newborns are better learners than thought, says a University of Florida researcher about a study that is the first of its type. The study could lead to identifying those at risk for developmental disorders such as autism and dyslexia.

“We found a basic form of learning in sleeping newborns, a type of learning that may not be seen in sleeping adults,” said Dana Byrd, a research affiliate in psychology at UF who collaborated with a team of scientists.

The findings give valuable information about how it is that newborns are able to learn so quickly from the world, when they sleep for 16 to 18 hours a day, Byrd said. “Sleeping newborns are better learners, better ‘data sponges’ than we knew,” she said.

In order to understand how newborns learn while in their most frequent state, Byrd and her colleagues tested the learning abilities of sleeping newborns by repeating tones that were followed by a gentle puff of air to the eyelids. After about 20 minutes, 24 of the 26 babies squeezed their eyelids together when the tone was sounded without the puff of air.

“This methodology opens up research areas into potentially detecting high risk populations, those who show abnormalities in the neural systems underlying this form of learning,” she said. “These would include siblings of individuals with autism and siblings of those with dyslexia.”

The research team’s paper, published online this week in Proceedings of the National Academy of Sciences, describes the results of their experiment with the 1- or 2-day-old infants, comparing them with a control group using EEG and video recordings. The brain waves of the 24 infants were found to change, providing a neural measurement of memory updating.

“While past studies find this type of learning can occur in infants who are awake, this is the first study to document it in their most frequent state, while they are asleep,” Byrd said. “Since newborns sleep so much of the time, it is important that they not only take in information but use the information in such a way to respond appropriately.”

Not only did the newborns show they can learn to give this reflex in response to the simple tone, but they gave the response at the right time, she said.

Learned eyelid movement reflects the normal functioning of the circuitry in the cerebellum, a neural structure at the base of the brain. This study’s method potentially offers a unique non-invasive tool for early identification of infants with atypical cerebellar structure, who are potentially at risk for a range of developmental disorders, including autism and dyslexia, she said.

The capacity of infants to learn during sleep contrasts with some researchers’ stance that learning new material does not take place in sleeping adults, Byrd said.

The immature nature of sleep patterns in infants could help explain why, she said.

“Newborn infants’ sleep patterns are quite different than those of older children or adults in that they show more active sleep where heart and breathing rates are very changeable,” she said. “It may be this sleep state is more amenable to experiencing the world in a way that facilitates learning.”

Another factor is that infants’ brains have greater neural plasticity, which is the ability for the neural connections to be changed, Byrd said. “Newborns may be very adaptive to learning in general simply because their brains have increased plasticity, increased propensity to be changed by experience,” she said.

Byrd collaborated with William Fifer, Michelle Kaku, Joseph Isler, Amanda Tarullo, all of Columbia University; Inge-Marie Eigsti, of the University of Connecticut; Jillian Grose-Fifer of the City University of New York; and Peter Balsam of Barnard College.

Cathy Keen,, 352-392-0186
Dana Byrd,, 352-339-5155

Dana Byrd | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>