Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn infants learn while asleep; study may lead to later disability tests

18.05.2010
Sleeping newborns are better learners than thought, says a University of Florida researcher about a study that is the first of its type. The study could lead to identifying those at risk for developmental disorders such as autism and dyslexia.

“We found a basic form of learning in sleeping newborns, a type of learning that may not be seen in sleeping adults,” said Dana Byrd, a research affiliate in psychology at UF who collaborated with a team of scientists.

The findings give valuable information about how it is that newborns are able to learn so quickly from the world, when they sleep for 16 to 18 hours a day, Byrd said. “Sleeping newborns are better learners, better ‘data sponges’ than we knew,” she said.

In order to understand how newborns learn while in their most frequent state, Byrd and her colleagues tested the learning abilities of sleeping newborns by repeating tones that were followed by a gentle puff of air to the eyelids. After about 20 minutes, 24 of the 26 babies squeezed their eyelids together when the tone was sounded without the puff of air.

“This methodology opens up research areas into potentially detecting high risk populations, those who show abnormalities in the neural systems underlying this form of learning,” she said. “These would include siblings of individuals with autism and siblings of those with dyslexia.”

The research team’s paper, published online this week in Proceedings of the National Academy of Sciences, describes the results of their experiment with the 1- or 2-day-old infants, comparing them with a control group using EEG and video recordings. The brain waves of the 24 infants were found to change, providing a neural measurement of memory updating.

“While past studies find this type of learning can occur in infants who are awake, this is the first study to document it in their most frequent state, while they are asleep,” Byrd said. “Since newborns sleep so much of the time, it is important that they not only take in information but use the information in such a way to respond appropriately.”

Not only did the newborns show they can learn to give this reflex in response to the simple tone, but they gave the response at the right time, she said.

Learned eyelid movement reflects the normal functioning of the circuitry in the cerebellum, a neural structure at the base of the brain. This study’s method potentially offers a unique non-invasive tool for early identification of infants with atypical cerebellar structure, who are potentially at risk for a range of developmental disorders, including autism and dyslexia, she said.

The capacity of infants to learn during sleep contrasts with some researchers’ stance that learning new material does not take place in sleeping adults, Byrd said.

The immature nature of sleep patterns in infants could help explain why, she said.

“Newborn infants’ sleep patterns are quite different than those of older children or adults in that they show more active sleep where heart and breathing rates are very changeable,” she said. “It may be this sleep state is more amenable to experiencing the world in a way that facilitates learning.”

Another factor is that infants’ brains have greater neural plasticity, which is the ability for the neural connections to be changed, Byrd said. “Newborns may be very adaptive to learning in general simply because their brains have increased plasticity, increased propensity to be changed by experience,” she said.

Byrd collaborated with William Fifer, Michelle Kaku, Joseph Isler, Amanda Tarullo, all of Columbia University; Inge-Marie Eigsti, of the University of Connecticut; Jillian Grose-Fifer of the City University of New York; and Peter Balsam of Barnard College.

Writer
Cathy Keen, ckeen@ufl.edu, 352-392-0186
Source
Dana Byrd, byrd@ufl.edu, 352-339-5155

Dana Byrd | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>