Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn infants learn while asleep; study may lead to later disability tests

18.05.2010
Sleeping newborns are better learners than thought, says a University of Florida researcher about a study that is the first of its type. The study could lead to identifying those at risk for developmental disorders such as autism and dyslexia.

“We found a basic form of learning in sleeping newborns, a type of learning that may not be seen in sleeping adults,” said Dana Byrd, a research affiliate in psychology at UF who collaborated with a team of scientists.

The findings give valuable information about how it is that newborns are able to learn so quickly from the world, when they sleep for 16 to 18 hours a day, Byrd said. “Sleeping newborns are better learners, better ‘data sponges’ than we knew,” she said.

In order to understand how newborns learn while in their most frequent state, Byrd and her colleagues tested the learning abilities of sleeping newborns by repeating tones that were followed by a gentle puff of air to the eyelids. After about 20 minutes, 24 of the 26 babies squeezed their eyelids together when the tone was sounded without the puff of air.

“This methodology opens up research areas into potentially detecting high risk populations, those who show abnormalities in the neural systems underlying this form of learning,” she said. “These would include siblings of individuals with autism and siblings of those with dyslexia.”

The research team’s paper, published online this week in Proceedings of the National Academy of Sciences, describes the results of their experiment with the 1- or 2-day-old infants, comparing them with a control group using EEG and video recordings. The brain waves of the 24 infants were found to change, providing a neural measurement of memory updating.

“While past studies find this type of learning can occur in infants who are awake, this is the first study to document it in their most frequent state, while they are asleep,” Byrd said. “Since newborns sleep so much of the time, it is important that they not only take in information but use the information in such a way to respond appropriately.”

Not only did the newborns show they can learn to give this reflex in response to the simple tone, but they gave the response at the right time, she said.

Learned eyelid movement reflects the normal functioning of the circuitry in the cerebellum, a neural structure at the base of the brain. This study’s method potentially offers a unique non-invasive tool for early identification of infants with atypical cerebellar structure, who are potentially at risk for a range of developmental disorders, including autism and dyslexia, she said.

The capacity of infants to learn during sleep contrasts with some researchers’ stance that learning new material does not take place in sleeping adults, Byrd said.

The immature nature of sleep patterns in infants could help explain why, she said.

“Newborn infants’ sleep patterns are quite different than those of older children or adults in that they show more active sleep where heart and breathing rates are very changeable,” she said. “It may be this sleep state is more amenable to experiencing the world in a way that facilitates learning.”

Another factor is that infants’ brains have greater neural plasticity, which is the ability for the neural connections to be changed, Byrd said. “Newborns may be very adaptive to learning in general simply because their brains have increased plasticity, increased propensity to be changed by experience,” she said.

Byrd collaborated with William Fifer, Michelle Kaku, Joseph Isler, Amanda Tarullo, all of Columbia University; Inge-Marie Eigsti, of the University of Connecticut; Jillian Grose-Fifer of the City University of New York; and Peter Balsam of Barnard College.

Writer
Cathy Keen, ckeen@ufl.edu, 352-392-0186
Source
Dana Byrd, byrd@ufl.edu, 352-339-5155

Dana Byrd | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>