Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study reveals the effect of habitat fragmentation on the forest carbon cycle

12.08.2014

Drier conditions at the edges of forest patches slow down the decay of dead wood and significantly alter the cycling of carbon and nutrients in woodland ecosystems, according to a new study.

Forests around the world have become increasingly fragmented, and in the UK three quarters of woodland area lie within 100 metres of the forest edge. It has long been known that so-called 'edge effects' influence temperature and moisture (the 'microclimate') in woodlands, but the influence on the carbon cycle is largely unknown.

Researchers from the University of Exeter and Earthwatch in the UK combined experiments with mathematical modelling to fill this knowledge gap. Wood blocks were placed in Wytham Woods near Oxford at various distances from the forest edge, and left to decay over two years.

The measured decay rates were applied to a model of the surrounding landscape, to allow comparison between the current fragmented woodland cover and decay rates in continuous forest.

The research, published today in the journal Global Change Biology, shows that wood decay rates in the southern UK are reduced by around one quarter due to fragmentation. This effect is much larger than expected due to variation in temperatures and rainfall among years.

Dr Dan Bebber of the University of Exeter said: "We were surprised by the strength of the edge effect on wood decay, which we believe was driven by reduced moisture at the forest edge impairing the activity of saprotrophic fungi – those that live and feed on dead organic matter".

Wood decay, and the recycling of other biological matter like leaf litter, is driven by fungi and other microbes that are sensitive to temperature and moisture. The difference between the absorption of carbon dioxide via photosynthesis by trees, and the release of carbon by microbes, determines the overall carbon balance of the forest.

Dr Martha Crockatt of Earthwatch said: "Saprotrophic fungi control the cycling of carbon and nutrients from wood in forests, and their responses to changes in microclimate driven by fragmentation, and also climate change, will influence whether forests are a carbon source or sink".

The southern UK has a temperate climate with moderate temperatures and rainfall. Similar studies in different parts of the world, from the warm tropics to the cooler boreal regions, are needed to understand how edge effects on decomposition vary globally.

###

"Edge effects on moisture reduce wood decomposition rate in a temperate forest" by M. E. Crockatt & D. P. Bebber, is published in Global Change Biology.

Eleanor Gaskarth | Eurek Alert!
Further information:
http://www.exeter.ac.uk

Further reports about: Biology Earthwatch Exeter decomposition forests fragmentation fungi habitat microbes moisture rainfall temperature woodland

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>