Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study into animal social behavior: Love or kill thy neighbor?

06.03.2014

A theoretical study led by the University of Exeter has shed new light on the conditions that lead to the evolution of spite or altruism in structured populations.

Understanding the way in which social behaviours such as altruism – when animals benefit others at their own expense – develop is a long-standing problem that has generated thousands of articles and heated debates.


A subordinate female meerkat babysits her mother's young; an iconic example of cooperative behavior in mammals.

Credit: Andy Young -- wildimages.org

Dr Florence Débarre of Biosciences at the University of Exeter led a study, published today in Nature Communications, which presents a comprehensive framework that applies to a large class of population structures and identifies the crucial elements which support the evolution of social behaviour.

Structured populations are those exhibiting either spatial or social structure. This can range from animals living in social groups - like meerkats - to bacteria in biofilms.

In these populations altruism evolves if, for individuals, the social benefit of living next to others outweighs the costs of competing against them.

Traditionally, population modellers have assumed that the direct benefits and costs of social interactions affect the ability to produce offspring (the fecundity). In natural populations, however, social interactions may also affect survival.

Dr Débarre and her collaborators combined these two features in their model, which revealed new insights. It turns out that helping your neighbours reproduce more or helping them live for longer does not have the same indirect consequences on your own fitness. These indirect consequences are crucial, and determine which type of social behaviour (helping, harming or doing nothing) can evolve.

When competition is fierce because space is so limited that an individual can only reproduce after some space has been freed up by the death of a neighbour, the researcher's results show that the social behaviours that are most advantageous are the ones in which individuals make their neighbours die sooner but at the same time help them reproduce. In other terms, the interaction is spiteful when it comes to survival, but altruistic on fecundity.

Dr Débarre, who is based at the University of Exeter's Penryn Campus in Cornwall, said: "In structured populations, social behaviour evolves if, for social individuals, the net social benefit of living next to other social individuals outweighs the costs of competing against them. We show that the latter depends on the way the population is updated, the type of social game that is played, and on how social interactions affect individual fertility and survival.

"There are ongoing and sometimes very heated debates on which mechanisms favour the evolution of social behaviour. Our mathematical framework also aims at reconciling these different approaches, and shows that they mainly correspond to different viewpoints of the same questions, depending on if we want to give explanations in terms of who is giving benefits to others, or who is receiving benefits."

###

The article, 'Social evolution in structured populations', by F. Débarre, C. Hauert & M.Doebeli, is published in the latest edition of Nature Communications.

Eleanor Gaskarth | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>