Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study: How stable is the West Antarctic Ice Sheet?

09.02.2016

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West Antarctic Ice Sheet. The result would be a rise in the global sea level by several metres.


Frozen meltwater (shelf ice edge, Larsen A, Weddell Sea)

Photo: W. Arntz / Alfred Wegener Institute

A collapse of the West Antarctic Ice Sheet may have occurred during the last interglacial period 125,000 years ago, a period when the polar surface temperature was around two degrees Celsius higher than today. This is the result of a series of model simulations which the researchers of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have published online in the journal Geophysical Research Letters.

The Antarctic and Greenland are covered by ice sheets, which together store more than two thirds of the world's freshwater. As temperatures rise, ice masses melt; in consequence the global sea level rises and threatens the coastal regions.

According to scientific findings, the Antarctic already today contributes to the annual sea level rise with 0.4 millimetres. However, the most recent world climate assessment report (IPCC 2013) pointed out that the development of the ice masses in the Antarctic is not yet sufficiently understood. Climate modellers of the Alfred Wegener Institute have therefore analysed the changes to the Antarctic Ice Sheet in the last interglacial period and applied their findings to future projections.

"Both, for the last interglacial period around 125,000 years ago and for the future our study identifies critical temperature limits in the Southern Ocean: If the ocean temperature rises by more than two degrees Celsius compared with today, the marine-based West Antarctic Ice Sheet will be irreversibly lost. This will then lead to a significant Antarctic contribution to the sea level rise of some three to five metres", explains AWI climate scientist Johannes Sutter. This rise, however, will only occur if climate change continues as it has up to now. The researchers make these assessments based on model simulations.

"Given a business-as-usual scenario of global warming, the collapse of the West Antarctic could proceed very rapidly and the West Antarctic ice masses could completely disappear within the next 1,000 years", says Johannes Sutter, the study's main author, who has just completed his doctoral thesis on this topic. "The core objective of the study is to understand the dynamics of the West Antarctic during the last interglacial period and the associated rise in sea level. It has been a mystery until now how the estimated sea level rise of a total of about seven metres came about during the last interglacial period. Because other studies indicate that Greenland alone could not have done it", Prof Gerrit Lohmann, the head of the research project, adds.

The new findings on the dynamics of the ice sheet allow conclusions to be drawn about how the ice sheet might behave in the wake of global warming. According to model calculations, the ice masses shrink in two phases. The first phase leads to a retreat of the ice shelves, ice masses that float on the ocean in the coastal area of the Antarctic stabilising the major glacier systems of the West Antarctic. If the ice shelves are lost, the ice masses and glaciers of the hinterland accelerate and the ice flow into the oceans increases. As a result, the sea level rises, the grounding line retreats, leading to a further floatation of the grounded ice masses with a progressing acceleration and retreat of the glaciers. These will achieve a stable intermediate state only once - put simply - a mountain ridge under the ice temporarily slows down the retreat of the ice masses.

If the ocean temperature continues to rise or if the grounding line of the inland ice reaches a steeply ascending subsurface, then the glaciers will continue to retreat even if the initial stable intermediate state has been reached. Ultimately, this leads to a complete collapse of the West Antarctic Ice Sheet. "Two maxima are also apparent in the reconstructions of the sea level rise in the last interglacial period. The behaviour of the West Antarctic in our newly developed model could be the mechanistic explanation for this", says a delighted Johannes Sutter.

The climate scientists used two models in their study. A climate model that includes various Earth system components such as atmosphere, oceans and vegetation, and a dynamic ice sheet model that includes all basic components of an ice sheet (floating ice shelves, grounded inland ice on the subsurface, the movement of the grounding line). Two different simulations were used with the climate model for the last interglacial period to feed the ice sheet model with all the necessary climate information.

"One reason for the considerable uncertainties when it comes to projecting the development of the sea level is that the ice sheet does not simply rest on the continent in steady state, but rather can be subject to dramatic changes", according to the AWI climate scientists, emphasising the challenges involved in making good estimates. "Some feedback processes, such as between the ice shelf areas and the ocean underneath, have not yet been incorporated into the climate models. We at the AWI as well as other international groups are working on this full steam." Improving our understanding of the systematic interaction between climate and ice sheets is crucial in order to answer one of the central questions of current climate research and for future generations: How steeply and, above all, how quickly can the sea level rise in the future?

Original paper:

Johannes Sutter, Paul Gierz, Klaus Grosfeld, Malte Thoma, Gerrit Lohmann: Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophysical Research Letters 2016. DOI: 10.1002/2016GL067818
http://onlinelibrary.wiley.com/doi/10.1002/2016GL067818/full

Notes for Editors:

Your scientific contact persons are Johannes Sutter (e-mail: Johannes.Sutter(at)awi.de), Professor Gerrit Lohmann, tel. +49 (0)471 4831-1758 (e-mail: Gerrit.Lohmann(at)awi.de) and Dr Klaus Grosfeld, tel. +49 (0)471 4831-1765 (e-mail: Klaus.Grosfeld(at)awi.de).

Please find printable images in the online version of this press release: http://www.awi.de/nc/en/about-us/service/press.html

Your contact person in the Communications and Media Department is Dr Folke Mehrtens, tel. +49 (0)471 4831-2007 (e-mail: medien(at)awi.de).

The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>