Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study helps explain links between sleep loss and diabetes

19.02.2015

Lack of sleep can elevate levels of free fatty acids in the blood, accompanied by temporary pre-diabetic conditions in healthy young men, according to new research published online February 19, 2015, in Diabetologia, the journal of the European Association for the Study of Diabetes.

The study, the first to examine the impact of sleep loss on 24-hour fatty acid levels in the blood, adds to emerging evidence that insufficient sleep--a highly prevalent condition in modern society--may disrupt fat metabolism and reduce the ability of insulin to regulate blood sugars. It suggests that something as simple as getting enough sleep could help counteract the current epidemics of diabetes and obesity.


These images show profiles of fatty acids (a) and growth hormone (b) during normal sleep (black lines) and restricted sleep (red lines) in 19 participants.

Credit: J. Broussard and co-authors

"At the population level, multiple studies have reported connections between restricted sleep, weight gain, and type 2 diabetes," said Esra Tasali, MD, assistant professor of medicine at the University of Chicago and senior author of the study. "Experimental laboratory studies, like ours, help us unravel the mechanisms that may be responsible."

The researchers found that after three nights of getting only four hours of sleep, blood levels of fatty acids, which usually peak and then recede overnight, remained elevated from about 4 a.m. to 9 a.m. As long as fatty acid levels remained high, the ability of insulin to regulate blood sugars was reduced.

The results provide new insights into the connections, first described by University of Chicago researchers 15 years ago, between sleep loss, insulin resistance and heightened risk of type 2 diabetes.

The researchers recruited 19 healthy male subjects between the ages of 18 and 30. These volunteers were monitored through two scenarios in randomized order. In one, they got a full night's rest--8.5 hours in bed (averaging 7.8 hours asleep) during four consecutive nights. In the other, they spent just 4.5 hours in bed (averaging 4.3 hours asleep) for four consecutive nights. The two studies were spaced at least four weeks apart.

Each subject's sleep was carefully monitored, diet was strictly controlled and blood samples were collected at 15 or 30 minute intervals for 24 hours, starting on the evening of the third night of each study. The researchers measured blood levels of free fatty acids and growth hormone, glucose and insulin, and the stress hormones noradrenaline and cortisol. After four nights in each sleep condition, an intravenous glucose-tolerance test was performed.

They found that sleep restriction resulted in a 15 to 30 percent increase in late night and early morning fatty acid levels. The nocturnal elevation of fatty acids (from about 4 a.m. to 6 a.m.) correlated with an increase in insulin resistance--a hallmark of pre-diabetes--that persisted for a nearly five hours.

Cutting back on sleep prolonged nighttime growth hormone secretion and led to an increase in noradrenaline in the blood, both of which contributed to the increase in fatty acid levels.

Although glucose levels were unchanged, the ability of available insulin to regulate blood glucose levels decreased by about 23 percent after a short sleep, "suggesting," the authors note, "an insulin-resistant state."

"It definitely looks like a packaged deal," said the study's lead author, Josiane Broussard, PhD, a former graduate student at the University of Chicago who is now a post-doctoral research scientist at Cedars-Sinai Medical Center's Diabetes and Obesity Research Institute in Los Angeles.

"Curtailed sleep produced marked changes in the secretion of growth hormone and levels of noradrenaline--which can increase circulating fatty acids," Broussard said. "The result was a significant loss of the benefits of insulin. This crucial hormone was less able to do its job. Insulin action in these healthy young men resembled what we typically see in early stages of diabetes."

Plasma free or non-esterified fatty acids are an important energy source for most body tissues. The demand for fatty acids goes up during exercise, for example, where they are used by cardiac and skeletal muscle; this preserves glucose for use by the brain. But constantly elevated fatty-acid levels in the blood are usually seen only in obese individuals as well as those with type 2 diabetes or cardiovascular disease. A 2012 study by a related research team emphasized the connections between sleep loss and the disruption of human fat cell function in energy regulation.

"This study opens the door to several intriguing questions," according to a Commentary in the journal by sleep specialists Jonathan Jun, MD, and Vsevolod Polotsky, MD, PhD, of Johns Hopkins University School of Medicine. Could variations in individual responses to short sleep explain susceptibility to metabolic consequences? Could dysregulation of fatty acid metabolism represent a common pathway linking various sleep disorders to metabolic syndrome? And why don't clinicians routinely ask their patients about sleep?

The study provides evidence for "potential mechanisms by which sleep restriction may be associated with insulin resistance and increased type 2 diabetes risk," the authors conclude. It supports the growing sense that insufficient sleep may disrupt fat metabolism. And it suggests that an intervention as simple as getting enough sleep could counteract the current epidemics of diabetes and obesity.

###

The National Institutes of Health, the Department of Defense and Science in Society - Branco Weiss Fellowship funded this study. Additional authors include Florian Chapotot, Varghese Abraham, Fanny Delebecque and Harry R. Whitmore from the University of Chicago Medicine, and Andrew Day from the University of Wisconsin.

John Easton | EurekAlert!

Further reports about: Metabolism acids fat metabolism fatty acid glucose levels hormone sleep type 2 diabetes

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>