Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study discovers biological basis for magic mushroom 'mind expansion'

03.07.2014

New research shows that our brain displays a similar pattern of activity during dreams as it does during a mind-expanding drug trip.

Psychedelic drugs such as LSD and magic mushrooms can profoundly alter the way we experience the world but little is known about what physically happens in the brain. New research, published in Human Brain Mapping, has examined the brain effects of the psychedelic chemical in magic mushrooms, called 'psilocybin,' using data from brain scans of volunteers who had been injected with the drug.

The study found that under psilocybin, activity in the more primitive brain network linked to emotional thinking became more pronounced, with several different areas in this network - such as the hippocampus and anterior cingulate cortex - active at the same time.

This pattern of activity is similar to the pattern observed in people who are dreaming. Conversely, volunteers who had taken psilocybin had more disjointed and uncoordinated activity in the brain network that is linked to high-level thinking, including self-consciousness.

... more about:
»Brain »LSD »Medicine »consciousness »drugs »mushroom »networks

Psychedelic drugs are unique among other psychoactive chemicals in that users often describe 'expanded consciousness,' including enhanced associations, vivid imagination and dream-like states. To explore the biological basis for this experience, researchers analysed brain imaging data from 15 volunteers who were given psilocybin intravenously while they lay in a functional magnetic resonance imaging (fMRI) scanner. Volunteers were scanned under the influence of psilocybin and when they had been injected with a placebo

"What we have done in this research is begin to identify the biological basis of the reported mind expansion associated with psychedelic drugs," said Dr. Robin Carhart-Harris from the Department of Medicine, Imperial College London.

"I was fascinated to see similarities between the pattern of brain activity in a psychedelic state and the pattern of brain activity during dream sleep, especially as both involve the primitive areas of the brain linked to emotions and memory. People often describe taking psilocybin as producing a dreamlike state and our findings have, for the first time, provided a physical representation for the experience in the brain."

The new study examined variation in the amplitude of fluctuations in what is called the blood-oxygen level dependent (BOLD) signal, which tracks activity levels in the brain. This revealed that activity in important brain networks linked to high-level thinking in humans becomes unsynchronised and disorganised under psilocybin. One particular network that was especially affected plays a central role in the brain, essentially 'holding it all together', and is linked to our sense of self.

In comparison, activity in the different areas of a more primitive brain network became more synchronised under the drug, indicating they were working in a more co-ordinated, 'louder' fashion. The network involves areas of the hippocampus, associated with memory and emotion, and the anterior cingulate cortex which is related to states of arousal.

Lead author Dr Enzo Tagliazucchi from Goethe University, Germany said: "A good way to understand how the brain works is to perturb the system in a marked and novel way. Psychedelic drugs do precisely this and so are powerful tools for exploring what happens in the brain when consciousness is profoundly altered. It is the first time we have used these methods to look at brain imaging data and it has given some fascinating insight into how psychedelic drugs expand the mind. It really provides a window through which to study the doors of perception."

Dr. Carhart-Harris added: "Learning about the mechanisms that underlie what happens under the influence of psychedelic drugs can also help to understand their possible uses. We are currently studying the effect of LSD on creative thinking and we will also be looking at the possibility that psilocybin may help alleviate symptoms of depression by allowing patients to change their rigidly pessimistic patterns of thinking. Psychedelics were used for therapeutic purposes in the 1950's and 1960's but now we are finally beginning to understand their action in the brain and how this can inform how to put them to good use."

The data was originally collected at Imperial College London in 2012 by a research group led by Dr. Carhart-Harris and Professor David Nutt from the Department of Medicine, Imperial College London. Initial results revealed a variety of changes in the brain associated with drug intake. To explore the data further Dr. Carhart-Harris recruited specialists in the mathematical modelling of brain networks, Professor Dante Chialvo and Dr Enzo Tagliazucchi to investigate how psilocybin alters brain activity to produce its unusual psychological effects.

As part of the new study, the researchers applied a measure called entropy. This was originally developed by physicists to quantify lost energy in mechanical systems, such as a steam engine, but entropy can also be used to measure the range or randomness of a system. For the first time, researchers computed the level of entropy for different networks in the brain during the psychedelic state.

This revealed a remarkable increase in entropy in the more primitive network, indicating there was an increased number of patterns of activity that were possible under the influence of psilocybin. It seemed the volunteers had a much larger range of potential brain states that were available to them, which may be the biophysical counterpart of 'mind expansion' reported by users of psychedelic drugs.

Previous research has suggested that there may be an optimal number of dynamic networks active in the brain, neither too many nor too few. This may provide evolutionary advantages in terms of optimizing the balance between the stability and flexibility of consciousness. The mind works best at a critical point when there is a balance between order and disorder and the brain maintains this optimal number of networks. However, when the number goes above this point, the mind tips into a more chaotic regime where there are more networks available than normal. Collectively, the present results suggest that psilocybin can manipulate this critical operating point.

###

The research was funded and intellectually supported by the Beckley Foundation. Professor Chialvo is from the Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Argentina and Dr Tagliazucchi is based at Goethe University, Germany.

For more information please contact:

Franca Davenport or Sam Wong
Research Media Officer
Imperial College London
Email: f.davenport@imperial.ac.uk
Tel: +44(0) 20 7594 2198 +44(0) 20 7594 3415
Out of hours duty press officer: +44(0)7803 886 248

Notes to editors:

1. Reference: Tagliazucchi, E. et al. 'Enhanced repertoire of brain dynamical states during the psychedelic experience' Human Brain Mapping, 2014. http://onlinelibrary.wiley.com/doi/10.1002/hbm.22562/abstract.

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Website: http://www.imperial.ac.uk

Franca Davenport | Eurek Alert!

Further reports about: Brain LSD Medicine consciousness drugs mushroom networks

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>