Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research: teaching the brain to reduce pain

10.07.2014

People can be conditioned to feel less pain when they hear a neutral sound, new research from the University of Luxembourg has found. This lends weight to the idea that we can learn to use mind-over-matter to beat pain. The scientific article was published recently in the online journal “PLOS One”.

Scientists have known for many years that on-going pain in one part of the body is reduced when a new pain is inflicted to another part of the body. This pain blocking is a physiological reaction by the nervous system to help the body deal with a potentially more relevant novel threat.

To explore this “pain inhibits pain” phenomenon, painful electric pulses were first administered to a subject’s foot (first pain) and the resulting pain intensity was then measured.

Then the subject was asked to put their hand in a bucket of ice water (novel stimulus causing pain reduction), and as they did so, a telephone ringtone sounded in headphones. After this procedure had been repeated several times, it was observed that the pain felt from the electrical stimulation was reduced simply when the ring tone sounded.

The brain had been conditioned to the ringtone being a signal to trigger the body’s physical pain blocking mechanism. The people being tested not only felt significantly less pain, but there were also fewer objective signs of pain, such as activity in the muscles used in the facial expression of pain (frowning). In total, 32 people were tested.

“We have shown that just as the physiological reaction of saliva secretion was provoked in Pavlov’s dogs by the ringing of a bell, an analogous effect occurs regarding the ability to mask pain in humans,” said Fernand Anton, Professor of Biological Psychology at the University of Luxembourg. “Conversely, similar learning effects may be involved in the enhancement and maintenance of pain in some patients,” added Raymonde Scheuren, lead researcher in this study.

Weitere Informationen:

http://orbilu.uni.lu/handle/10993/16824 - link to the full scientific article “Beep Tones Attenuate Pain following Pavlovian Conditioning of an Endogenous Pain Control Mechanism”
http://www.uni.lu - homepage of the University of Luxembourg

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: Psychology blocking inhibits pain phenomenon physiological procedure secretion stimulus

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>