Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research suggests connection between white matter and cognitive health

08.04.2014

A multidisciplinary group of scientists from the Sanders-Brown Center on Aging at the University of Kentucky have identified an interesting connection between the health of the brain tissue that supports cognitive functioning and the presence of dementia in adults with Down syndrome.

Published in the Neurobiology of Aging, the study, which focused on detecting changes in the white matter connections of the brain, offers tantalizing potential for the identification of biomarkers connected to the development of dementia, including Alzheimer's disease.

"We used magnetic resonance imaging to compare the health of the brain's white matter and how strongly it connects different parts of the brain," explains Elizabeth Head, Ph.D., the study's senior author. "The results indicate a compelling progression of deterioration in the integrity of white matter in the brains of our study participants commensurate with their cognitive health."

Research team member David Powell, PhD, compared the brain scans of three groups of volunteers: persons with Down syndrome but no dementia, persons with Down syndrome and dementia, and a healthy control group.

Using MRI technologies, brain scans of subjects with Down syndrome showed some compromise in the tissues of brain's frontal lobe compared to those from the control group. When people with Down syndrome and dementia were compared to people with Down syndrome without dementia, those same white matter connections were even less healthy.

Perhaps the most intriguing aspect of the study was the correlation between the cognitive abilities of participants with Down Syndrome and the integrity of their white matter– those who had higher motor skill coordination and better learning and memory ability had healthier frontal white matter connections.

Persons with Down syndrome are at an extremely high risk for developing Alzheimer's disease after the age of 40. The team hopes their work might eventually lead to the identification of biomarkers for the development of Alzheimer's disease in people with Down syndrome and, potentially, extend that to the general population as well.

Head cautions that these results are to some extent exploratory due to the small cohort of 30 participants. But, she says, "If we are able to identify people who, based on biomarkers, have a higher risk of developing Alzheimer's disease, we might be able to intervene at an earlier point to retard the progression of the disease."

###

The Neurobiology of Aging is a peer-reviewed journal with a primary emphasis on mechanisms of nervous system changes with age or diseases associated with age.

Laura Dawahare | EurekAlert!
Further information:
http://www.uky.edu

Further reports about: Aging Alzheimer's Neurobiology Syndrome biomarkers cognitive connections dementia frontal matter progression scans

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>