Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals fish are smarter than we thought

31.10.2014

A new study from researchers at the University of Bath and Queen Mary University of London has reported the first evidence that fish are able to process multiple objects simultaneously.

The discovery is proof not just that fish are more intelligent than their reputation for a ‘three-second memory’ suggests, but importantly paves the way for new medical advances that could help in stroke rehabilitation and in treatments for attention deficit disorders.

Published today in the journal PLOS ONE, the study is the first to identify ‘parallel visual search’ – the ability to pick out one object among many – in zebrafish.

Visual search involves an active scan of an environment in order to look for just one object or feature. In everyday life we might relate to this in searching for an item on a supermarket shelf, looking for friends in a crowd or even identifying ‘Where’s Wally?’

Given the benefits of visual search in finding a mate, spotting a predator or searching for prey, the research team suggest that doing this efficiently by ignoring distracting items should be common among species. Yet, up until this point it had only been identified in primates, rats and pigeons. Without the frontal part of the brain in the neocortex, it was assumed that fish would have to examine every item, one after the other, to find the target, rather than assess the whole scene together.

As part of the study, 11 adult zebrafish were presented with different visual stimuli, in the form of different coloured circles on a computer monitor, over a period of six days to assess their visual processing abilities. Scientists taught zebrafish to associate food with a red disk, and then placed that disc among other distracting discs.

Lead author from the University of Bath’s Department of Psychology, Dr Michael Proulx explains: “Although vision seems simple and quick, it involves a lot of computational power to figure out where things are in a crowded environment.

It is incredible to discover that the zebrafish brain, with its small size and simple structure, can seemingly find a target visually without getting slower. No matter how many items we added to the scene to distract the fish, they had no problem responding at the same speed every time.

"The zebrafish is an excellent model organism to study behavioural genetics and neurobiology thanks to its smaller brain and transparent skin. Now that we have discovered their mental sophistication, there is a great opportunity to discover the neural code and genetics of how humans pay attention, and apply those findings to treatments for those with ADHD or strokes."

By uncovering the similarities between fish and humans in how they process visual information, the study now opens up other possibilities for using zebrafish for research.

Dr Matthew Parker from Queen Mary University of London, co-author of the paper, adds: “Fish don’t deserve their reputation as the stupid branch of the animal family tree, the more research we do the more we find out that they are capable of quite complex learning and problem solving. This could be because being part of a shoal requires complicated interactions with their environments and quick processing of large amounts of information.

“Zebrafish are genetically surprisingly similar to humans and are incredibly useful to our studies of how genes influence addiction and psychiatric diseases, among other things.”

The research adds to growing knowledge of fish intelligence that suggests they are capable of much more than we previously thought. Other studies have found that fish are able to pick the larger of two groups of objects, count up to at least four and have comparatively lengthy memories.

The latest paper, ‘Parallel mechanisms for visual search in zebrafish’, is available online via PLOS ONE at http://dx.plos.org/10.1371/journal.pone.0111540


For further information, please contact the University of Bath Press Office on +44 (0)1225 386 319 or +44 (0)7966 341 431.


Notes
We are one of the UK's leading universities, ranked number one in the UK for student satisfaction for the last two years in the National Student Survey (NSS) and in the top ten of all national league tables, including being named ‘Best Campus University’ in the Sunday Times Good University Guide 2014.

Our Mission is to deliver world class research and teaching, educating our students to become future leaders and innovators, and benefiting the wider population through our research, enterprise and influence. Our courses are innovative and interdisciplinary and we have an outstanding record of graduate employment.

Andrew Dunne | University of Bath & Queen Mary University of London

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>