Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New “magnifying glass” helps spot delinquency risks


Drug abuse, acts of rampage – what’s really the matter with kids today? While there are many places to lay blame – family, attitude, peers, school, community – a new study shows that those risks vary in intensity from kid to kid and can be identified.

Scientists at Washington State University and Pennsylvania State University have found a way to spot the adolescents most susceptible to specific risk factors for delinquency. Breaking down a survey of over 30,000 teens, researchers were able to pinpoint five subgroups and the risks for delinquency that were most relevant for each.

WSU’s Brittany Cooper.

The findings were recently published in the Journal of Adolescent Health; the study was funded by the National Institute on Drug Abuse.

The paper was a collaboration between Stephanie Lanza, scientific director, and Bethany Bray, research associate, in the Pennsylvania State University Methodology Center and Brittany Cooper, assistant professor, in the Washington State University department of human development.

Cooper is also a faculty member in WSU’s new program in prevention science. The Ph.D. program is one of the first in the nation focused on developing strategies for drug and alcohol prevention, youth development, obesity prevention and early child care and learning programs.

Individual analysis a new approach

In the current study, Lanza, Cooper and Bray used an innovative type of statistical analysis to uncover hidden delinquency risk subgroups.

Their analysis focused on the individuals instead of the broad-brush technique normally applied to a general population. Both methods evaluate how factors like family, peers, school or community relate to delinquency.

But the broad-brush analysis, said Cooper, “assumes all adolescents are the same. We don’t believe this is the case and felt that the results would vary for different adolescents. We wanted to fine-tune the approach.”

After analyzing a national sample of more than 30,000 typical 10th-grade boys and girls, Cooper said their intuition paid off when the technique acted as a magnifying glass to zoom in on previously undetected risk subgroups.

Persistent problems

Of the five subgroups identified, the smallest—1 percent of the teens—would have been completely overlooked by the broad-brush technique yet accounts for the vast majority of delinquent acts, she said.

“On average, these kids each committed 44 acts of delinquency over the past year,” she said. “This is an extremely high-risk group of kids and the only group where individual antisocial attitudes did not predict delinquency. This was surprising as it usually shows up as a very strong predictive factor.”

“For most kids, there is a normal spike in delinquency during adolescence, but it’s not too serious and they usually grow out of it. For other kids, delinquency seems to take a persistent course … violent behaviors and difficult temperaments show up very early in life and never resolve,” she said. “We’re wondering if the 1 percent might be part of this group.”

Though none of the usual delinquency risk factors stood out for that group, they did clearly define the other subgroups.

Peer, family, community cohesion

The largest—60 percent—could be called the “peer pressure” group. These children were most influenced by peer and individual factors such as antisocial attitudes or socializing with delinquent friends.

Cooper said this confirms past studies and that, for most kids, life-skills training and other school-based programs can be effective in helping them resist peer pressure.

A smaller group—29 percent—included teens who showed widespread risk at the individual, peer, family and school levels.

“This was the only group where family cohesion was an important predictor of delinquency,” Cooper said. “Even if youth in this group are acting out negatively, it’s more about the family system. For these children, we might target strategies toward resolving family conflict issues—such as family-based therapy.”

For 8 percent of the teens, community cohesion factors, such as living in a highly chaotic neighborhood, played the biggest role in delinquency.

“These kids need to feel more connected to the community,” she said. “They need more access to things like basketball tournaments or a safe place to hang out with their friends.”

Better matching services to kids

She said her team’s ultimate goal is to use the study’s nuanced findings to more closely match preventive services, programs and children.

“We have evidence that prevention can have some really impressive long-term benefits,” she said. “Our study takes another step forward by giving hints at what type of intervention might help which type of youth most.

“By targeting resources more efficiently, we can save taxpayer money and hopefully help prevent kids from going down an unhealthy path,” she said.


Brittany Cooper, WSU Department of Human Development, 509-335-2896,
Rebecca E. Phillips, WSU University Communications, 509-335-2346,

Brittany Cooper | Eurek Alert!
Further information:

Further reports about: Adolescents Communications RISK STUDY Youth adolescents cohesion glass methods pressure risk strategies study therapy youth

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>