Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientists Develop New Computational Model to Analyze Mouse Behavior

04.10.2010
For decades, carefully logging data about how mice go through the motions of their daily routines has been a tedious staple of behavioral and neuroscience research:
• Hour 2, minute 27: mouse 4 is sleeping;
• Hour 3, minute 12: mouse 7 is eating;
and so on. It’s a task most people would happily cede to automation. Now, according to a new study by MIT neuroscientists, that’s finally possible.

In a paper published online Sept. 7, 2010, in the journal Nature Communications, Thomas Serre and a team of colleagues at the McGovern Institute for Brain Research at MIT and the California Institute of Technology describe a new computer system that is as accurate as people in identifying mouse behaviors in videos.

What’s more, the team is making the fully customizable open-source software available for free. Given standard camcorder footage of a mouse, the software will automatically identify a mouse’s behavior frame by frame.

“We measured the agreement between any two human observers and it was more than 70 percent,” said Serre, who joined the faculty of Brown University in January 2010 after conducting his doctoral and postdoctoral studies, including the work described in the paper, in Tomaso Poggio’s lab at MIT. “The system agreed with humans at the same level. There was no significant difference between the annotations provided by our system and any two human observers.”

The value of the software is not only that it could relieve graduate students and lab technicians from some boredom. It takes about 25 person-hours to fully annotate an hour of mouse movies. In a small experiment with 10 mice who are each observed for 5 hours, that’s 1,250 person-hours of work. Because it is computerized, the system might also provide less subjective annotations than a human team would and could therefore be less susceptible to bias.

“This is a small step towards developing automatic tools for quantifying phenotyping of behavior,” said Poggio. “In the quest to understand the causes of mental diseases, labs at McGovern and elsewhere can rely on precise, quantitative and affordable tools to analyze the genes that contribute to disease. The bottleneck is the lack of corresponding techniques for quantifying the behavioral effects of mental diseases in animal models and in humans. The combination of large-scale genotyping and phenotyping will allow powerful data analysis techniques to help uncover the complex relationship between multiple genes and complex behaviors.”

There are a few commercial programs on the market, some of which cost thousands of dollars. They mostly base their behavioral coding on sensors, rather than video, and therefore have agreement rates with human observers of around 60 percent, substantially lower than the rates between people or between people and the system reported in the paper.

Although feats of artificial perception that compare to real perception are notable, it should not be a surprise that the system matches human levels of observation. It is, after all, based on a computer model of how the human brain interprets what it sees.

“It’s mimicking what the visual system does when you process motion,” Serre says.

In addition, the system learns from experience. To train it to detect grooming behavior, for example, the researchers fed the system lots of videos of mice grooming themselves and certified what the behavior was so the system would know. From there the software was able to identify new scenes of grooming without any coaching. In the paper, the team shows that the software is capable of performing the chore even in different strains of mice in a variety of lighting and other conditions. Serre says the software is likely to be easy to train to work with other lab animals.

“Neuroscience is beginning to give us useful blueprints for a more powerful artificial vision technology,” Poggio explains. “It is encouraging that studies of the brain can lead to a system like ours that can help the scientific community better understand mental diseases.”

The paper’s other authors are Hueihan Jhuang, Estibaliz Garrote, Jim Mutch and Tomaso Poggio at MIT, and Xinlin Yu, Vinita Khilnani, and Andrew D. Steele at Caltech.

Funding: McGovern Institute Neurotechnology (MINT) Program at the McGovern Institute for Brain Research at MIT, Broad Fellows Program in Brain Circuitry at Caltech, and the Taiwan National Science Council.

Julie Pryor | Newswise Science News
Further information:
http://web.mit.edu/newsoffice/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>