Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientists Develop New Computational Model to Analyze Mouse Behavior

04.10.2010
For decades, carefully logging data about how mice go through the motions of their daily routines has been a tedious staple of behavioral and neuroscience research:
• Hour 2, minute 27: mouse 4 is sleeping;
• Hour 3, minute 12: mouse 7 is eating;
and so on. It’s a task most people would happily cede to automation. Now, according to a new study by MIT neuroscientists, that’s finally possible.

In a paper published online Sept. 7, 2010, in the journal Nature Communications, Thomas Serre and a team of colleagues at the McGovern Institute for Brain Research at MIT and the California Institute of Technology describe a new computer system that is as accurate as people in identifying mouse behaviors in videos.

What’s more, the team is making the fully customizable open-source software available for free. Given standard camcorder footage of a mouse, the software will automatically identify a mouse’s behavior frame by frame.

“We measured the agreement between any two human observers and it was more than 70 percent,” said Serre, who joined the faculty of Brown University in January 2010 after conducting his doctoral and postdoctoral studies, including the work described in the paper, in Tomaso Poggio’s lab at MIT. “The system agreed with humans at the same level. There was no significant difference between the annotations provided by our system and any two human observers.”

The value of the software is not only that it could relieve graduate students and lab technicians from some boredom. It takes about 25 person-hours to fully annotate an hour of mouse movies. In a small experiment with 10 mice who are each observed for 5 hours, that’s 1,250 person-hours of work. Because it is computerized, the system might also provide less subjective annotations than a human team would and could therefore be less susceptible to bias.

“This is a small step towards developing automatic tools for quantifying phenotyping of behavior,” said Poggio. “In the quest to understand the causes of mental diseases, labs at McGovern and elsewhere can rely on precise, quantitative and affordable tools to analyze the genes that contribute to disease. The bottleneck is the lack of corresponding techniques for quantifying the behavioral effects of mental diseases in animal models and in humans. The combination of large-scale genotyping and phenotyping will allow powerful data analysis techniques to help uncover the complex relationship between multiple genes and complex behaviors.”

There are a few commercial programs on the market, some of which cost thousands of dollars. They mostly base their behavioral coding on sensors, rather than video, and therefore have agreement rates with human observers of around 60 percent, substantially lower than the rates between people or between people and the system reported in the paper.

Although feats of artificial perception that compare to real perception are notable, it should not be a surprise that the system matches human levels of observation. It is, after all, based on a computer model of how the human brain interprets what it sees.

“It’s mimicking what the visual system does when you process motion,” Serre says.

In addition, the system learns from experience. To train it to detect grooming behavior, for example, the researchers fed the system lots of videos of mice grooming themselves and certified what the behavior was so the system would know. From there the software was able to identify new scenes of grooming without any coaching. In the paper, the team shows that the software is capable of performing the chore even in different strains of mice in a variety of lighting and other conditions. Serre says the software is likely to be easy to train to work with other lab animals.

“Neuroscience is beginning to give us useful blueprints for a more powerful artificial vision technology,” Poggio explains. “It is encouraging that studies of the brain can lead to a system like ours that can help the scientific community better understand mental diseases.”

The paper’s other authors are Hueihan Jhuang, Estibaliz Garrote, Jim Mutch and Tomaso Poggio at MIT, and Xinlin Yu, Vinita Khilnani, and Andrew D. Steele at Caltech.

Funding: McGovern Institute Neurotechnology (MINT) Program at the McGovern Institute for Brain Research at MIT, Broad Fellows Program in Brain Circuitry at Caltech, and the Taiwan National Science Council.

Julie Pryor | Newswise Science News
Further information:
http://web.mit.edu/newsoffice/

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>