Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal diversity makes a difference, says Carnegie Mellon study

30.08.2010
Heterogeneous groups of neurons transmit twice as much information as homogeneous groups

Much like snowflakes, no two neurons are exactly alike. But it's not the size or shape that sets one neuron apart from another, it's the way it responds to incoming stimuli. Carnegie Mellon University researchers have discovered that this diversity is critical to overall brain function and essential in how neurons process complex stimuli and code information. The researchers published their findings, the first to examine the function of neuron diversity, online in Nature Neuroscience.

"I think neuroscientists have, at an intuitive level, recognized the variability between neurons, but we swept it under the rug because we didn't consider that diversity could be a feature. Rather, we looked at it as a fundamental reflection of the imprecision of biology," said Nathan N. Urban, professor and head of CMU's Department of Biological Sciences. "We wanted to reconsider that notion. Perhaps this diversity is important — maybe it serves some function."

Estimates say that the human brain alone has upwards of 100 billion neurons, which can be broken down into a number of different types. While members of the same type look structurally alike, and, as a group, contribute to completing the same overall task, each individual neuron in that group fires in response to subtle differences in the incoming stimulus. Typically neuroscientists average out this heterogeneity to obtain their results, assuming that the variability is a "bug of biology."

"When we think about computer chips, variability in hardware clearly can be very destructive. Manufacturers spend a lot of time and expense making sure each processor on a chip is identical," Urban said. "The brain is considered to be one of the most sophisticated computers there is. We were intrigued by the idea that the brain might make use of the messy, complex nature of its biological hardware to function more efficiently."

Urban and postdoctoral student Krishnan Padmanabhan, both researchers in CMU's Department of Biological Sciences and the joint CMU/University of Pittsburgh Center for the Neural Basis of Cognition, tested single neurons' responses to a complex stimulus. By placing an electrical probe into individual excitatory neurons called mitral cells and exposing them to a complex computer-controlled noise stimulus, the researchers were able to determine how each cell responded. They found that out of the dozens of neurons they tested, no two had the exact same response. While the researchers believed that these results were striking on their own, it led them to wonder whether or not the neurons were giving a messy version of a single response, or if they were each providing different pieces of information about the stimulus.

To test their hypothesis, the CMU researchers used a tool called spike-triggered averaging that allowed them to determine what feature of the stimulus causes each neuron to respond. They found that some responded to rapid changes in the stimulus and others to slower changes; still other neurons responded when the input signal changed in a regular or rhythmic way. The researchers then computed the information contained in the outputs of highly diverse sets of neurons and compared it to that of groups of more similar neurons. They found that the heterogeneous groups of neurons transmitted two times as much information about the stimulus than the homogeneous group.

"Diversity is an intrinsic good," Urban said. "A population in which each member is a little different in terms of what they can do is a more efficient and more effective population. It's like a baseball team — if you want to win, you shouldn't put nine pitchers on the field."

Aside from its role in information coding, the researchers believe neuronal diversity also could play a role in neurological disorders like epilepsy, Parkinson's disease and schizophrenia. In these conditions, there is a disruption in the synchrony and rhythmicity of neuronal firing. In the case of epilepsy and Parkinson's, groups of neurons fire simultaneously, causing seizures or tremors. In schizophrenia, some neurons have a reduced ability to coordinate firing in certain situations, such as during attention tasks. Changes in the diversity of neuronal populations may alter the ease with which neurons enter into these rhythmic firing patterns.

Additionally, the researchers want to discover how diversity is achieved. Neurons of a given type are typically born at the same stage of development, with many of them coming from the same progenitor cell. Urban hopes to discover how neurons diversify during development, what proteins are involved and if any type of training or exposure enhances diversity.

This research was funded by the National Institute on Deafness and Other Communication Disorders, one of the National Institutes of Health.

About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu

Further reports about: Biological Science Carnegie Mellon Science TV Silicon Valley

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>