Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nearsightedness increases with level of education and longer schooling

21.07.2014

Scientific study undertaken by the Mainz University Medical Center shows correlation between education and nearsightedness

Education and behavior have a greater impact on the development of nearsightedness than do genetic factors: With each school year completed, a person becomes more nearsighted. The higher the level of education completed, the more severe is the impairment of vision.

These are the conclusions drawn by researchers at the Department of Ophthalmology at the Mainz University Medical Center from the results of the first population-based cohort study of this condition. A nearsighted eye is one in which the eyeball is too long in relation to the refractive power of the cornea and lens. As a result, distant objects are displayed on the retina out of focus.

The eyeball continues to grow in humans until they reach adulthood and this means that myopia can also continue to progress in persons who have reached their 30s. It has been shown that both genetic predisposition as well as environmental stimuli play a role in the development of nearsightedness.

The team at the Department of Ophthalmology at the Mainz University Medical Center led by Professor Norbert Pfeiffer and PD Dr. Alireza Mirshahi found strong evidence that attaining a higher level of education and spending more years in school are two factors associated with a greater prevalence and severity of nearsightedness, or myopia.

The results of the ophthalmologic segment of the population-based Gutenberg Health Study (GHS) undertaken by the Mainz University Medical Center provides evidence that environmental factors may outweigh genetic factors in the development of myopia. A related article by the Mainz team has just been published in the American Academy of Ophthalmology's scientific journal, Ophthalmology.

Nearsightedness is widespread. However, it has become more prevalent around the world in recent years and presents a growing global health and economic concern. Severe myopia is a major cause of visual impairment and is closely associated with an increased risk of complications, such as retinal detachment, macular degeneration, premature cataracts, and glaucoma. Developed Asian countries report increasing myopia rates of up to 80 percent. The rapidity of this escalation suggested that environmental factors, for example near work such as reading, using a computer, and higher education, might play an important role.

To analyze the correlation between myopia development and education, researchers at the Mainz University Medical Center examined nearsightedness in 4,658 Germans aged 35 to 74, excluding anyone with cataracts or who had undergone refractive surgery. This research was undertaken as part of the Gutenberg Health Study and the results demonstrate that myopia becomes more prevalent with a higher level of education. Only 24 percent of the nearsighted subjects had no high school education or other training, while 35 percent of high school graduates and vocational school graduates were nearsighted. In contrast, no less than 53 percent of university graduates were nearsighted.

In addition to education levels completed, the Mainz-based researchers also found that people who spent more years in school proved to be more myopic, with nearsightedness worsening for each year of school. Furthermore, the researchers looked at the effects of 45 genetic markers, but found that these have a much lower impact on the severity of nearsightedness compared to the level of education achieved.

So what can be done to remedy this situation? It is not possible to 'cure' nearsightedness; it can only be corrected with visual aids or by surgical intervention designed to change refractive parameters. Attempts to slow the progression of myopia with drugs, special spectacles, or contact lenses have proven unsuccessful to date. Recent studies among children and young adults in Denmark and Asia showed that the risk for the development of myopia may be less with spending more time outdoors and, thus, by greater exposure to sunlight. Fifteen hours per week are advisable, while, at the same time, the eyes should not be used for close-up activities such as reading, watching TV, or using computers and smart phones for more than 30 hours per week. “Since students appear to be at a higher risk for nearsightedness, it makes sense to encourage them to spend more time outdoors as a precaution," said PD Dr. Alireza Mirshahi, lead author of the study.

The Gutenberg Health Study (GHS) is an interdisciplinary, population-based, prospective, monocenter cohort study, which has been conducted at the Mainz University Medical Center since 2007. Cardiovascular diseases, cancer, eye diseases, metabolic disorders as well as immune system and mental disorders are being investigated as part of the study. The goal of the study is to improve the individual risk prediction for these diseases. To this end, lifestyle, psychosocial factors, environment, clinical laboratory parameters, and the severity of any subclinical disorder are being taken into consideration.

A comprehensive biorepository is being developed so that molecular biological investigations can be conducted. During the baseline visit, 15,010 participants aged 35 to 74 years were invited to participate in a 5-hour examination program at the study center. This was followed by a computer-assisted telephone interview (CATI) using a standardized questionnaire and the assessment of diseases and health problems after 2.5 years. All endpoints will be subjected to extensive validation. In April 2012, a detailed follow-up examination of participants similar to the baseline examination was conducted at the center five years after their inclusion in the study. The aim is to continue to monitor the cohort and conduct further tests.

Further information: Mirshahi A. et al., Myopia and Level of Education: Results from the Gutenberg Health Study; Manuscript no. 2013-797. article in press

Contact
Professor Dr. Norbert Pfeiffer and PD Dr. Alireza Mirshahi
Department of Ophthalmology
Mainz University Medical Center
Johannes Gutenberg University Mainz
D 55131 Mainz, GERMANY
phone +49 6131 17-7085
fax +49 6131 17-6620
e-mail: alireza.mirshahi@unimedizin-mainz.de

Press contact
Barbara Reinke
Press and Public Relations
Mainz University Medical Center
Johannes Gutenberg University Mainz
D 55131 Mainz, GERMANY
phone +49 6131 17-7428
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1.

Weitere Informationen:

http://www.uni-mainz.de/presse/17465_ENG_HTML.php - press release ;
http://www.gutenberghealthstudy.org/ - Gutenberg Health Study

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Health Ophthalmology cohort diseases disorders evidence factors graduates nearsightedness

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

The first genome of a coral reef fish

29.09.2016 | Life Sciences

Gentle sensors for diagnosing brain disorders

29.09.2016 | Medical Engineering

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>