Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nearsightedness increases with level of education and longer schooling

21.07.2014

Scientific study undertaken by the Mainz University Medical Center shows correlation between education and nearsightedness

Education and behavior have a greater impact on the development of nearsightedness than do genetic factors: With each school year completed, a person becomes more nearsighted. The higher the level of education completed, the more severe is the impairment of vision.

These are the conclusions drawn by researchers at the Department of Ophthalmology at the Mainz University Medical Center from the results of the first population-based cohort study of this condition. A nearsighted eye is one in which the eyeball is too long in relation to the refractive power of the cornea and lens. As a result, distant objects are displayed on the retina out of focus.

The eyeball continues to grow in humans until they reach adulthood and this means that myopia can also continue to progress in persons who have reached their 30s. It has been shown that both genetic predisposition as well as environmental stimuli play a role in the development of nearsightedness.

The team at the Department of Ophthalmology at the Mainz University Medical Center led by Professor Norbert Pfeiffer and PD Dr. Alireza Mirshahi found strong evidence that attaining a higher level of education and spending more years in school are two factors associated with a greater prevalence and severity of nearsightedness, or myopia.

The results of the ophthalmologic segment of the population-based Gutenberg Health Study (GHS) undertaken by the Mainz University Medical Center provides evidence that environmental factors may outweigh genetic factors in the development of myopia. A related article by the Mainz team has just been published in the American Academy of Ophthalmology's scientific journal, Ophthalmology.

Nearsightedness is widespread. However, it has become more prevalent around the world in recent years and presents a growing global health and economic concern. Severe myopia is a major cause of visual impairment and is closely associated with an increased risk of complications, such as retinal detachment, macular degeneration, premature cataracts, and glaucoma. Developed Asian countries report increasing myopia rates of up to 80 percent. The rapidity of this escalation suggested that environmental factors, for example near work such as reading, using a computer, and higher education, might play an important role.

To analyze the correlation between myopia development and education, researchers at the Mainz University Medical Center examined nearsightedness in 4,658 Germans aged 35 to 74, excluding anyone with cataracts or who had undergone refractive surgery. This research was undertaken as part of the Gutenberg Health Study and the results demonstrate that myopia becomes more prevalent with a higher level of education. Only 24 percent of the nearsighted subjects had no high school education or other training, while 35 percent of high school graduates and vocational school graduates were nearsighted. In contrast, no less than 53 percent of university graduates were nearsighted.

In addition to education levels completed, the Mainz-based researchers also found that people who spent more years in school proved to be more myopic, with nearsightedness worsening for each year of school. Furthermore, the researchers looked at the effects of 45 genetic markers, but found that these have a much lower impact on the severity of nearsightedness compared to the level of education achieved.

So what can be done to remedy this situation? It is not possible to 'cure' nearsightedness; it can only be corrected with visual aids or by surgical intervention designed to change refractive parameters. Attempts to slow the progression of myopia with drugs, special spectacles, or contact lenses have proven unsuccessful to date. Recent studies among children and young adults in Denmark and Asia showed that the risk for the development of myopia may be less with spending more time outdoors and, thus, by greater exposure to sunlight. Fifteen hours per week are advisable, while, at the same time, the eyes should not be used for close-up activities such as reading, watching TV, or using computers and smart phones for more than 30 hours per week. “Since students appear to be at a higher risk for nearsightedness, it makes sense to encourage them to spend more time outdoors as a precaution," said PD Dr. Alireza Mirshahi, lead author of the study.

The Gutenberg Health Study (GHS) is an interdisciplinary, population-based, prospective, monocenter cohort study, which has been conducted at the Mainz University Medical Center since 2007. Cardiovascular diseases, cancer, eye diseases, metabolic disorders as well as immune system and mental disorders are being investigated as part of the study. The goal of the study is to improve the individual risk prediction for these diseases. To this end, lifestyle, psychosocial factors, environment, clinical laboratory parameters, and the severity of any subclinical disorder are being taken into consideration.

A comprehensive biorepository is being developed so that molecular biological investigations can be conducted. During the baseline visit, 15,010 participants aged 35 to 74 years were invited to participate in a 5-hour examination program at the study center. This was followed by a computer-assisted telephone interview (CATI) using a standardized questionnaire and the assessment of diseases and health problems after 2.5 years. All endpoints will be subjected to extensive validation. In April 2012, a detailed follow-up examination of participants similar to the baseline examination was conducted at the center five years after their inclusion in the study. The aim is to continue to monitor the cohort and conduct further tests.

Further information: Mirshahi A. et al., Myopia and Level of Education: Results from the Gutenberg Health Study; Manuscript no. 2013-797. article in press

Contact
Professor Dr. Norbert Pfeiffer and PD Dr. Alireza Mirshahi
Department of Ophthalmology
Mainz University Medical Center
Johannes Gutenberg University Mainz
D 55131 Mainz, GERMANY
phone +49 6131 17-7085
fax +49 6131 17-6620
e-mail: alireza.mirshahi@unimedizin-mainz.de

Press contact
Barbara Reinke
Press and Public Relations
Mainz University Medical Center
Johannes Gutenberg University Mainz
D 55131 Mainz, GERMANY
phone +49 6131 17-7428
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1.

Weitere Informationen:

http://www.uni-mainz.de/presse/17465_ENG_HTML.php - press release ;
http://www.gutenberghealthstudy.org/ - Gutenberg Health Study

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Health Ophthalmology cohort diseases disorders evidence factors graduates nearsightedness

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>