Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nearsightedness increases with level of education and longer schooling

21.07.2014

Scientific study undertaken by the Mainz University Medical Center shows correlation between education and nearsightedness

Education and behavior have a greater impact on the development of nearsightedness than do genetic factors: With each school year completed, a person becomes more nearsighted. The higher the level of education completed, the more severe is the impairment of vision.

These are the conclusions drawn by researchers at the Department of Ophthalmology at the Mainz University Medical Center from the results of the first population-based cohort study of this condition. A nearsighted eye is one in which the eyeball is too long in relation to the refractive power of the cornea and lens. As a result, distant objects are displayed on the retina out of focus.

The eyeball continues to grow in humans until they reach adulthood and this means that myopia can also continue to progress in persons who have reached their 30s. It has been shown that both genetic predisposition as well as environmental stimuli play a role in the development of nearsightedness.

The team at the Department of Ophthalmology at the Mainz University Medical Center led by Professor Norbert Pfeiffer and PD Dr. Alireza Mirshahi found strong evidence that attaining a higher level of education and spending more years in school are two factors associated with a greater prevalence and severity of nearsightedness, or myopia.

The results of the ophthalmologic segment of the population-based Gutenberg Health Study (GHS) undertaken by the Mainz University Medical Center provides evidence that environmental factors may outweigh genetic factors in the development of myopia. A related article by the Mainz team has just been published in the American Academy of Ophthalmology's scientific journal, Ophthalmology.

Nearsightedness is widespread. However, it has become more prevalent around the world in recent years and presents a growing global health and economic concern. Severe myopia is a major cause of visual impairment and is closely associated with an increased risk of complications, such as retinal detachment, macular degeneration, premature cataracts, and glaucoma. Developed Asian countries report increasing myopia rates of up to 80 percent. The rapidity of this escalation suggested that environmental factors, for example near work such as reading, using a computer, and higher education, might play an important role.

To analyze the correlation between myopia development and education, researchers at the Mainz University Medical Center examined nearsightedness in 4,658 Germans aged 35 to 74, excluding anyone with cataracts or who had undergone refractive surgery. This research was undertaken as part of the Gutenberg Health Study and the results demonstrate that myopia becomes more prevalent with a higher level of education. Only 24 percent of the nearsighted subjects had no high school education or other training, while 35 percent of high school graduates and vocational school graduates were nearsighted. In contrast, no less than 53 percent of university graduates were nearsighted.

In addition to education levels completed, the Mainz-based researchers also found that people who spent more years in school proved to be more myopic, with nearsightedness worsening for each year of school. Furthermore, the researchers looked at the effects of 45 genetic markers, but found that these have a much lower impact on the severity of nearsightedness compared to the level of education achieved.

So what can be done to remedy this situation? It is not possible to 'cure' nearsightedness; it can only be corrected with visual aids or by surgical intervention designed to change refractive parameters. Attempts to slow the progression of myopia with drugs, special spectacles, or contact lenses have proven unsuccessful to date. Recent studies among children and young adults in Denmark and Asia showed that the risk for the development of myopia may be less with spending more time outdoors and, thus, by greater exposure to sunlight. Fifteen hours per week are advisable, while, at the same time, the eyes should not be used for close-up activities such as reading, watching TV, or using computers and smart phones for more than 30 hours per week. “Since students appear to be at a higher risk for nearsightedness, it makes sense to encourage them to spend more time outdoors as a precaution," said PD Dr. Alireza Mirshahi, lead author of the study.

The Gutenberg Health Study (GHS) is an interdisciplinary, population-based, prospective, monocenter cohort study, which has been conducted at the Mainz University Medical Center since 2007. Cardiovascular diseases, cancer, eye diseases, metabolic disorders as well as immune system and mental disorders are being investigated as part of the study. The goal of the study is to improve the individual risk prediction for these diseases. To this end, lifestyle, psychosocial factors, environment, clinical laboratory parameters, and the severity of any subclinical disorder are being taken into consideration.

A comprehensive biorepository is being developed so that molecular biological investigations can be conducted. During the baseline visit, 15,010 participants aged 35 to 74 years were invited to participate in a 5-hour examination program at the study center. This was followed by a computer-assisted telephone interview (CATI) using a standardized questionnaire and the assessment of diseases and health problems after 2.5 years. All endpoints will be subjected to extensive validation. In April 2012, a detailed follow-up examination of participants similar to the baseline examination was conducted at the center five years after their inclusion in the study. The aim is to continue to monitor the cohort and conduct further tests.

Further information: Mirshahi A. et al., Myopia and Level of Education: Results from the Gutenberg Health Study; Manuscript no. 2013-797. article in press

Contact
Professor Dr. Norbert Pfeiffer and PD Dr. Alireza Mirshahi
Department of Ophthalmology
Mainz University Medical Center
Johannes Gutenberg University Mainz
D 55131 Mainz, GERMANY
phone +49 6131 17-7085
fax +49 6131 17-6620
e-mail: alireza.mirshahi@unimedizin-mainz.de

Press contact
Barbara Reinke
Press and Public Relations
Mainz University Medical Center
Johannes Gutenberg University Mainz
D 55131 Mainz, GERMANY
phone +49 6131 17-7428
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1.

Weitere Informationen:

http://www.uni-mainz.de/presse/17465_ENG_HTML.php - press release ;
http://www.gutenberghealthstudy.org/ - Gutenberg Health Study

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Health Ophthalmology cohort diseases disorders evidence factors graduates nearsightedness

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>