Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Launches Intensive Study into Future Hurricane Risk

09.10.2008
NCAR has launched an intensive study, with federal agencies and the insurance and energy industries, to examine how global warming will influence hurricanes in the next few decades. The project will use a combination of computer models to look at future hurricane activity in unprecedented detail.

The National Center for Atmospheric Research (NCAR), working with federal agencies and universities as well as the insurance and energy industries, has launched an intensive study to examine how global warming will influence hurricanes in the next few decades.

The goal of the project is to better inform coastal communities, offshore drilling operations, and other interests that could be affected by changes in hurricanes.

The project will use a combination of global climate and regional weather models, run on one of the world's most powerful supercomputers, to look at future hurricane activity in unprecedented detail. Researchers are targeting the hurricane-prone Gulf of Mexico and the Caribbean Sea to assess the likely changes, between now and the middle of the century, in the frequency, intensity, and paths of these powerful storms. Initial results are expected early next year.

"It is clear from the impacts of recent hurricane activity that we urgently need to learn more about how hurricane intensity and behavior may respond to a warming climate," says NCAR scientist Greg Holland, who is leading the project. "The increasingly dense development along our coastlines and our dependence on oil from the Gulf of Mexico leave our society dangerously vulnerable to hurricanes."

The new study follows two major reports, by the U.S. Climate Change Science Program (CCSP) and Intergovernmental Panel on Climate Change (IPCC), that found evidence for a link between global warming and hurricane activity. But many questions remain about future hurricanes. For example, the CCSP report concluded that future changes in frequency were uncertain and that rainfall and intensity were likely to increase, but with unknown consequences.

Improved understanding of climate change and hurricanes is an especially high priority for the energy industry, which has a concentration of drilling platforms, refineries, pipelines, and other infrastructure in a region that is vulnerable to severe weather. Hurricanes Gustav and Ike damaged offshore oil production and several refineries, disrupting gasoline supplies.

The project is part of a larger effort examining regional climate change between 1995 and 2055. The simulations are being run on NCAR's bluefire supercomputer with support from the National Science Foundation, NCAR's sponsor, and through a long-term collaboration with the insurance industry through the Willis Research Network. Additional backing is expected from the Research Partnership to Secure Energy for America, a nonprofit consortium that includes the U.S. Department of Energy and several energy companies. The Georgia Institute of Technology is collaborating on the research, and other universities are also involved.

"This research program by NCAR is a major contribution to the insurance industry and public policymakers," says Rowan Douglas, managing director of Willis. "The primary way to improve our understanding of present and future hurricane risk is to generate computer simulations of storms in unprecedented detail. NCAR's work is at the forefront of this critical line of research, helping those with onshore and offshore risks in the Gulf, and with relevance to all affected by tropical cyclones in the United States and worldwide."

--The research plan---

For this new NCAR project, researchers will examine three decades in detail: 1995-2005, 2020-2030, and 2045-2055. They will use statistical techniques to fill in the gaps between these decades. A major goal is to examine how several decades of greenhouse-gas buildup could affect regional climate and, in turn, influence hurricanes and other critical weather features. The team will also investigate the impact of the powerful storms on global climate.

One of the most difficult technical challenges for such a project is to create a model that can capture both the climate of the entire world and the behavior of a single hurricane. Models simulate weather conditions at thousands of points in a three-dimensional grid that represents the atmosphere. If the points are spaced far apart, as in a coarse-resolution global climate model, the model will run more quickly on a supercomputer but it cannot simulate a hurricane in realistic detail. Conversely, a high-resolution regional weather model can simulate a hurricane with a core that is just a few miles across, but it may not correctly include factors driven by global-scale warming that could affect hurricane formation, such as changes in wind shear and atmospheric stability.

To get around these roadblocks, NCAR scientists are integrating two of the center's leading models into the Nested Regional Climate Model (NRCM). They nest a special version of their high-resolution weather model (the Weather Research and Forecasting model, or WRF) inside a lower-resolution, global climate model (the Community Climate System Model, or CCSM).

The resulting simulations show fine-scale detail for certain regions, like the Gulf of Mexico, while also incorporating global climate patterns. For each of its decade-long time slices, the NRCM's resolution will be about 20 miles across Africa, Europe, and the South Atlantic; 7.5 miles across the tropical Atlantic and northeastern United States; and an even sharper 2.5 miles over the Caribbean and Gulf of Mexico, southeastern United States, and the drought-prone western United States.

"Combining weather and climate models in this way enables more detailed projections of hurricanes in a warming world than any study to date," says Holland. "These projections will help reduce the uncertainty of current assessments, and they also give us experience in predicting changes to other high-impact weather systems."

With its considerable requirements, the project is putting months of intense demand on bluefire, NCAR's flagship supercomputer. Manufactured by IBM, it is ranked as one of the 30 most powerful computers on Earth and can solve up to 76 trillion equations every second.

"The NRCM is one of the most intensive computer simulations we have witnessed at NCAR," says Tom Bettge, director of operations and services for NCAR's Computational and Information Systems Laboratory. "As we evaluate future North American climate in increasing detail, we will look to even bigger and faster high-performance computers."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>