Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Nature’s Leading Indicators Presage Environmental Disaster?

07.01.2009
Economists use leading indicators — the drivers of economic performance – to take the temperature of the economy and predict the future.

Now, in a new study, scientists take a page from the social science handbook and use leading indicators of the environment to presage the potential collapse of ecosystems. The study, published today (Jan. 5) in the Proceedings of the National Academy of Sciences by two ecologists and an economist, suggests it may be possible to use nature’s leading indicators to avert environmental disaster.

Ecosystems worldwide — lakes, ocean fisheries, coral reefs, forests, wetlands and rangelands — are under constant and escalating pressure from humans and many are on the brink of collapse, according to Stephen R. Carpenter, a University of Wisconsin-Madison professor of zoology and an author of the new study.

“It’s a big problem because they are very hard to predict. It is hard to get a handle on statistically,” says Carpenter of what ecologists call “regime shift,” a disastrous change in the way an individual ecosystem functions. Such change can be dramatic, as in the collapse of the North Atlantic cod fishery or increasing desertification in Africa and the Middle East, and can have serious economic, political and social consequences.

Stephen R. Carpenter, 608-262-8690, srcarpen@wisc.edu

The idea of using leading indicators in science is not new. Geologists use seismic indicators to try to predict earthquakes and physicians use measures of such things as cholesterol and blood pressure to try to predict patient health. But applying the same kind of monitoring and statistical tools to forecast the health of ecosystems and, ultimately, to prevent serious ecological harm is only now coming into play, says Carpenter.

In the new study, Carpenter, Reinette Biggs of Stockholm University and William A. Brock, an economist at UW-Madison, used northern Wisconsin’s sport fishery as a laboratory to see if leading indicators of ecological collapse can be detected far enough in advance to avert disaster.

“The answer is ‘yes’ if the policy interventions can be swift and ‘no’ if there are delays,” says Carpenter of the study’s results.

Northern Wisconsin has the largest concentration of freshwater lakes in the world, and the sport fishery is a critical economic engine for the region. The researchers looked at two major threats to the fishery: overfishing and habitat destruction caused by lake home-building and the loss of trees that would otherwise fall into the lake and provide habitat for sport fish.

“If you are a fish, woody habitat is perfect. It’s a place to hide and it has food. It’s like a room with a refrigerator,” says Carpenter. “But there is way less habitat in lakes with a lot of houses. We are particularly concerned about woody habitat loss.”

In both the case of habitat loss and the case of overfishing, indicators of potential harm to the fishery can be detected before a breakdown in the lake ecosystem occurs, Carpenter explains. “However, only in the case of overfishing can policy change fast enough to avert the damage. It is not possible to act fast enough to avert the damage from habitat destruction because it takes too long to grow the trees. In that case, you have to start over.”

The key to avoiding disaster, Carpenter argues, is monitoring: “We really need to be monitoring and analyzing the data from these ecosystems as a way to keep them healthy. Otherwise, by the time the problem surfaces it is too late.”

Carpenter says it is possible to sense impending ecosystem regime shifts by carefully monitoring the changing variables that are likely to damage an environment. For example, daily measuring of chlorophyll in a lake could reveal an impending transition to a state where water quality will decline to the point that plant and animal communities in the lake are at risk.

“The behavior of the system becomes extremely variable in the run up to change. You see a lot of variability, and right at the point of regime shift, it becomes very unstable,” Carpenter notes.

According to Carpenter, in addition to expanded monitoring and analysis of ecosystem data, averting regime shifts depends on effective policy. Enabling society to respond more rapidly to information about looming change, he says, is necessary to keep ecosystems producing the things people need.

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>