Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature reaches for the high-hanging fruit

17.08.2011
Researchers have used tools of paleontology to gain new insights into the diversity of natural plant chemicals

In the first study of its kind, researchers have used tools of paleontology to gain new insights into the diversity of natural plant chemicals. They have shown that during the evolution of these compounds nature doesn't settle for the 'low-hanging fruit' but favours rarer, harder to synthesise forms, giving pointers that will help in the search for potent new drugs.

Research on the fossil record has allowed the study of the evolution of the characteristic swirl shapes of Nautilus shells and shown that recurrent designs have formed to cope with changing sea levels. Why these forms occur, and not others, is an important evolutionary question, and to answer this, an analytical technique known as theoretical morphology has been developed. Theoretical morphology involves the mathematical simulation of forms such as the possible shape and dimensions of the nautilus shell. This allows a comparison of theoretical and actual distributions to study the evolutionary significance of biological forms, past and present.

Inspired by this, a group of scientists led by Dr Paul ÓMáille at the John Innes Centre and the Institute of Food Research, which are strategically funded by BBSRC, and Joseph P. Noel at the Salk Institute / Howard Hughes Medical Institute where the work began, applied the same theoretical morphology techniques to the study of terpenes, a group of natural products produced by plants.

Plants like pepper, tomato, and potato belong to the Solonanceae family, and they synthesize a signature set of terpenes for chemical defense against pathogens. Terpenes are essential for the ecological viability of the plant but also provide important compounds for human use including pharmaceuticals. Examples of well-known bioactive terpenes include taxol, which is used to treat certain cancers, and the anti-malarial drug artemisinin. Terpenes are useful as fragrances and flavourings, and their diverse uses have made them the subject of much research looking for novel compounds.

"The big question is how plants have evolved to make these chemicals," said Dr ÓMáille. "Is there a physical explanation, based on the chemical reaction, for why certain terpenes are favoured? Are plants simply making the easy to synthesize low hanging fruit of the terpene chemical world?"

To investigate these questions, Dr ÓMáille, Professor B. Andes Hess of Vanderbilt University and colleagues applied theoretical morphology to quantum mechanics calculations to compare theoretical and actual abundances of terpenes from solanaceaous plants. "We discovered a perplexing disparity between the predicted and natural abundance of terpenes. The common terpenes we see in nature are predicted to be quite rare, based on the chemistry. On the other hand, the terpene forms predicted to dominate are scarcely seen in nature." said Dr ÓMáille.

"Nature in fact reaches for the higher-hanging fruit, skewing chemical reactions to favour rarer chemicals. This suggests an adaptive significance to the distribution of chemicals produced by plants."

The distribution and diversity of plant terpenes in nature has yet to be exhaustively characterized, however this study provides new insights into the physical processes that underlie terpene biosynthesis in plants. This may reveal routes to rare or undiscovered natural products with potent bioactivities that could be used to help meet the ever-growing demand for new effective drugs.

Reference: Physical constraints on sesquiterpene diversity arising from cyclization of the eudesm-5-yl carbocation, Journal of the American Chemical Society 133(32), 12632� doi: 10.1021/ja203342p

Andrew Chapple | EurekAlert!
Further information:
http://www.jic.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>