Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Native Americans Significantly Modified American Landscape Years Prior to the Arrival of Europeans

23.03.2011
A new study by Baylor University geology researchers shows that Native Americans’ land use nearly a century ago produced a widespread impact on the eastern North American landscape and floodplain development several hundred years prior to the arrival of major European settlements.

The study appears on-line in the journal Geology.

Researchers attribute early colonial land-use practices, such as deforestation, plowing and damming with influencing present-day hydrological systems across eastern North America. Previous studies suggest that Native Americans’ land use in eastern North America initially caused the change in hydrological systems, however, little direct evidence has been provided until now.

The Baylor study found that pre-European so-called “natural” floodplains have a history of prehistoric indigenous land use, and thus colonial-era Europeans were not the first people to have an impact on the hydrologic systems of eastern North America. The study also found that prehistoric small-scale agricultural societies caused widespread ecological change and increased sedimentation in hydrologic systems during the Medieval Climate Anomaly–Little Ice Age, which occurred about 700 to 1,000 years ago.

“These are two very important findings,” said Gary Stinchcomb, a Baylor doctoral candidate who conducted the study. “The findings conclusively demonstrate that Native Americans in eastern North America impacted their environment well before the arrival of Europeans. Through their agricultural practices, Native Americans increased soil erosion and sediment yields to the Delaware River basin.”

The Baylor researchers found that prehistoric people decreased forest cover to reorient their settlements and intensify corn production. They also contributed to increased sedimentation in valley bottoms about 700 to 1,000 years ago, much earlier than previously thought. The findings suggest that prehistoric land use was the initial cause of increased sedimentation in the valley bottoms, and sedimentation was later amplified by wetter and stormier conditions.

To conduct the study, the Baylor researchers took samples along the Delaware River Valley. Landforms were mapped based on relative elevations to Delaware River base flow and archaeological excavations assessed the presence of human habitation. The Baylor researchers then used a site-specific geoarchaeological approach and a regional synthesis of previous research to test the hypothesis that the indigenous population had a widespread impact on terrestrial sedimentation in eastern North America.

“This study provides some of the most significant evidence yet that Native Americans impacted the land to a much greater degree than previously thought,” said Dr. Steve Driese, professor and chair of Baylor’s department of geology, College of Arts and Sciences, who co-authored the study. “It confirms that Native American populations had widespread effects on sedimentation.”

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>