Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

National study of nanomaterial toxicity sets stage for policies to address health risks

06.05.2013
For the first time, researchers from institutions around the country have conducted an identical series of toxicology tests evaluating lung-related health impacts associated with widely used engineered nanomaterials (ENMs). The study provides comparable health risk data from multiple labs, which should help regulators develop policies to protect workers and consumers who come into contact with ENMs.

Researchers have done a great deal of toxicological research on ENMs over the past 10 years, but the results have often been difficult to interpret. This is because ENMs from different sources had different chemical and physical properties, and because investigators used different protocols to conduct the experiments.

"The goal of creating this multicenter consortium was to have multiple labs recreate key studies using the same materials and protocols, so that policy-makers have access to consistent, comparable results from multiple institutions," says Dr. James Bonner, an associate professor of environmental and molecular toxicology at NC State and lead author of a paper describing the work.

For this study, researchers from eight institutions used mouse and rat models to look at pulmonary health effects related to exposure to titanium dioxide nanoparticles and carbon nanotubes.

The researchers found that carbon nanotubes, which are used in everything from bicycle frames to high performance electronics, produced inflammation and inflammatory lesions in the lower portions of the lung. However, the researchers found that the nanotubes could be made less hazardous if treated to remove excess metal catalysts used in the manufacturing process or modified by adding carboxyl groups to the outer shell of the tubes to make them more easily dispersed in biological fluids.

The researchers also found that titanium dioxide nanoparticles also caused inflammation in the lower regions of the lung. Belt-shaped titanium nanoparticles caused more cellular damage in the lungs, and more pronounced lesions, than spherical nanoparticles.

"The findings are significant, but the real take-away message here is that the multicenter consortium concept works – and that means this is a starting point for assessing nanomaterials using this approach," Bonner says. "I'm optimistic that this will serve as a blueprint for similar efforts, which will give regulators comparable data across institutions that will be easier for them to interpret."

The paper, "Inter-laboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials," was published May 6 in Environmental Health Perspectives. Corresponding authors on the paper are Bonner and Dr. Kent Pinkerton of UC Davis. The research was funded by the National Institute of Environmental Health Sciences. The institutions were North Carolina State University, University of California Davis, East Carolina University, the National Institute for Occupational Safety and Health, University of Rochester, Michigan State University, University of Washington and the Center for Environmental Implications of Nanotechnology.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>