Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Study Shows Health, Food Security Benefits From Climate Change Actions

13.01.2012
A new study led by a NASA scientist highlights 14 key air pollution control measures that, if implemented, could slow the pace of global warming, improve health and boost agricultural production.

The research, led by Drew Shindell of NASA's Goddard Institute for Space Studies (GISS) in New York City, finds that focusing on these measures could slow mean global warming 0.9 ºF (0.5ºC) by 2050, increase global crop yields by up to 135 million metric tons per season and prevent hundreds of thousands of premature deaths each year. While all regions of the world would benefit, countries in Asia and the Middle East would see the biggest health and agricultural gains from emissions reductions.

"We've shown that implementing specific practical emissions reductions chosen to maximize climate benefits would also have important 'win-win' benefits for human health and agriculture," said Shindell. The study was published today in the journal Science.

Shindell and an international team considered about 400 control measures based on technologies evaluated by the International Institute for Applied Systems Analysis in Laxenburg, Austria. The new study focused on 14 measures with the greatest climate benefit. All 14 would curb the release of either black carbon or methane, pollutants that exacerbate climate change and damage human or plant health either directly or by leading to ozone formation.

Black carbon, a product of burning fossil fuels or biomass such as wood or dung, can worsen a number of respiratory and cardiovascular diseases. The small particles also absorb radiation from the sun causing the atmosphere to warm and rainfall patterns to shift. In addition, they darken ice and snow, reducing their reflectivity and hastening global warming.

Methane, a colorless and flammable substance that is a major constituent of natural gas, is both a potent greenhouse gas and an important precursor to ground-level ozone. Ozone, a key component of smog and also a greenhouse gas, damages crops and human health.

While carbon dioxide is the primary driver of global warming over the long term, limiting black carbon and methane are complementary actions that would have a more immediate impact because these two pollutants circulate out of the atmosphere more quickly.

Shindell and his team concluded that these control measures would provide the greatest protection against global warming to Russia, Tajikistan and Kyrgyzstan, countries with large areas of snow or ice cover. Iran, Pakistan and Jordan would experience the most improvement in agricultural production. Southern Asia and the Sahel region of Africa would see the most beneficial changes to precipitation patterns.

The south Asian countries of India, Bangladesh and Nepal would see the biggest reductions in premature deaths. The study estimates that globally between 700,000 and 4.7 million premature deaths could be prevented each year.

Black carbon and methane have many sources. Reducing emissions would require that societies make multiple infrastructure upgrades. For methane, the key strategies the scientists considered were capturing gas escaping from coal mines and oil and natural gas facilities, as well as reducing leakage from long-distance pipelines, preventing emissions from city landfills, updating wastewater treatment plants, aerating rice paddies more, and limiting emissions from manure on farms.

For black carbon, the strategies analyzed include installing filters in diesel vehicles, keeping high-emitting vehicles off the road, upgrading cooking stoves and boilers to cleaner burning types, installing more efficient kilns for brick production, upgrading coke ovens and banning agricultural burning.

The scientists used computer models developed at GISS and the Max Planck Institute for Meteorology in Hamburg, Germany, to model the impact of emissions reductions. The models showed widespread benefits from the methane reduction because it is evenly distributed throughout the atmosphere. Black carbon falls out of the atmosphere after a few days so the benefits are stronger in certain regions, especially ones with large amounts of snow and ice.

"Protecting public health and food supplies may take precedence over avoiding climate change in most countries, but knowing that these measures also mitigate climate change may help motivate policies to put them into practice," Shindell said. The new study builds on a United Nations Environment Program/World Meteorological Organization report, also led by Shindell, published last year.

"The scientific case for fast action on these so-called 'short-lived climate forcers' has been steadily built over more than a decade, and this study provides further focused and compelling analysis of the likely benefits at the national and regional level," said United Nations Environment Program Executive Director Achim Steiner.

Related Links:

Interactive and embeddable country-by-country graphs and maps
Study in Science
UNEP/WMO Assessment Report
Summary of UNEP/WMO Assessment Report for Policy Makers
Q & A with Drew Shindell Adam Voiland/Rani Gran
NASA Goddard Space Flight Center
301-614-6949/301-286-2483
adam.p.voiland@nasa.gov/rani.c.gran@nasa.gov

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/interactive-charts.html

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>