Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study predicted outbreak of deadly virus

19.02.2009
An early warning system, more than a decade in development, successfully predicted the 2006-2007 outbreak of the deadly Rift Valley fever in northeast Africa, according to a new study led by NASA scientists.

Rift Valley fever is unique in that its emergence is closely linked to interannual climate variability. Utilizing that link, researchers including Assaf Anyamba, a geographer and remote sensing scientist with the University of Maryland Baltimore County and NASA's Goddard Space Flight Center in Greenbelt, Md., used a blend of NASA and National Oceanic and Atmospheric Administration measurements of sea surface temperatures, precipitation, and vegetation cover to predict when and where an outbreak would occur.

The final product, a Rift Valley fever "risk map," gave public health officials in East Africa up to six weeks of warning for the 2006-2007 outbreak, enough time to lessen human impact. The researchers described their findings in the Proceedings of the National Academy of Sciences.

The first-of-its-kind prediction is the culmination of decades of research. During an intense El Niño event in 1997, the largest known outbreak of Rift Valley fever spread across the Horn of Africa. About 90,000 people were infected with the virus, which is carried by mosquitoes and transmitted to humans by mosquito bites or through contact with infected livestock.

The 1997 outbreak provoked the formation of a working group--funded by the U.S. Department of Defense Global Emerging Infections Surveillance and Response System--to see if predictions of an outbreak could be made operational. Such predictions would not only aid mitigation efforts in the endemic countries and protect the global public, but would help protect American civilian and military personnel located and traveling overseas, ensure the safety of imported goods and animals, and prevent infected humans or mosquitoes from entering the United States.

"To do all that, we need to understand a disease in the endemic region," Anyamba said.

The link between the mosquito life cycle and vegetation growth was first described in a 1987 Science paper by co-authors Kenneth Linthicum of the U.S. Department of Agriculture and Compton Tucker of NASA Goddard. Then, a subsequent 1999 Science paper described link between the disease and the El Niño-Southern Oscillation (ENSO). ENSO is a cyclical, global phenomenon of sea surface temperature changes that can contribute to extreme climate events around the world.

For some areas, the warm phase of ENSO brings drought, while in some areas like the Horn of Africa, ENSO leads to above-normal rainfall. Excessive, sustained rainfall awakens the eggs of mosquitoes infected with Rift Valley fever that can remain dormant for up to 15 years in dried-out dambos—shallow wetlands common in the region.

Building on that research, Anyamba and colleagues set out to predict when conditions were ripe for excessive rainfall, and thus an outbreak. They started by examining satellite measurements of sea surface temperatures. One of the first indicators that ENSO will bring an abundance of rainfall is a rise in the surface temperature of the eastern equatorial Pacific Ocean and the western equatorial Indian Ocean.

But perhaps the most telling indicator of a potential outbreak is a measure of the mosquito habitat itself. The researchers used a satellite-derived vegetation data set--processed at NASA Goddard and called the Normalized Difference Vegetation Index—that measures the landscape's "greenness." Greener regions have more than the average amount of vegetation, which means more water and more potential habitat for infected mosquitoes.

"Greenness describes habitat and represents life," Anyamba said. "Without such systematic, continuous Earth system measurements from satellites, we would not be able to translate the information into outbreak predictions."

The final product is a risk map for Rift Valley fever, showing areas of anomalous rainfall and vegetation growth over a three-month period. The forecast is updated and issued monthly as a means to guide ground-based mosquito and virus surveillance.

As early as September 2006, the monthly advisory from Anyamba and colleagues indicated an elevated risk of Rift Valley fever activity in East Africa. By November, Kenya's government had begun collaborating with non-governmental organizations to implement disease mitigation measures—restricting animal movement, distributing mosquito bed nets, informing the public, and enacting programs to control mosquitoes and vaccinate animals.

"There is no human vaccine," Anyamba said, "so prevention is critical."

Between two and six weeks later—depending on the location—the disease was detected in humans.

"Satellite data is a valuable tool that allowed us to look remotely at large sections of land in Africa and understand what was happening on the ground," Linthicum said.

After the 2006-2007 outbreak, Anyamba and colleagues assessed the effectiveness of the warning maps. They compared locations that had been identified as "at risk" with the locations where Rift Valley fever was reported.

Of the 1,088 cases reported in Kenya, Somalia, and Tanzania, 64 percent fell within areas delineated on the risk map. The other 36 percent of cases did not occur within "at risk" areas, but none were more than 30 miles away, leading the researchers believe that they had identified most of the initial infection sites.

The potential for mapping the risk of disease outbreaks is not limited to Africa. Previous research has shown that risk maps are possible whenever the abundance of a virus can be linked to extremes in climate conditions. Chikungunya in east Africa and Hantavirus and West Nile virus in the United States, for example, have been linked to conditions of rainfall extremes.

"We are coming up on almost 30 years of vegetation data from satellites, which provides us with a good basis for predicting," Linthicum said upon returning from a Rift Valley fever workshop in Cairo, Egypt in January. "At this meeting, it was clear that using this tool as a basis for predictions has become accepted as the norm."

Written By:
Kathryn Hansen
Goddard Space Flight Center

Kathryn Hansen | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/riftvalley_fever.html

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>