Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-sponsored study describes how space flight impacts astronauts' eyes and vision

15.11.2011
North American Neuro-Ophthalmology Society (NANOS) member describes novel eye findings in astronauts after long duration space flight

A newly published ophthalmologic study recently described the history, clinical findings, and possible etiologies of novel ophthalmic findings discovered in astronauts after long-duration space flights.

The study team included ophthalmologists Thomas H. Mader, MD, of Alaska Native Medical Center and neuro-ophthalmologist and NANOS member, Andrew G. Lee, MD, Professor and Chair of the Department of Ophthalmology of The Methodist Hospital, Houston, Texas. The report is published in October's Ophthalmology, the journal of the American Academy of Ophthalmology.

The authors reported eye exam findings in seven astronauts as well as an analysis of post-flight questionnaires regarding in-flight vision changes in approximately 300 additional astronauts. The seven astronauts with ocular anomalies had returned from long-duration space missions to the International Space Station (ISS) and all seven subjects had undergone complete eye examinations, including dilated exams and photographs of the back of the eye. Several had MRI scans, spinal taps, and computerized analysis of their optic nerve. After 6 months of space flight, all 7 astronauts had eye findings, including swollen optic nerves, distortion of the shape of the eyeball, and retinal changes. Most became more farsighted, and had blurred vision, especially at near. The spinal taps showed either top normal or slightly elevated pressures in the spinal fluid surrounding the brain and optic nerves.

The 300 post-flight questionnaires documented that approximately 29% and 60% of astronauts on short and long-duration missions, respectively, experienced a worsening of distance or near visual acuity. Some of these vision changes remain unresolved years after flight. The authors theorized that changes may have resulted from fluid shifts brought about by prolonged exposure to low gravity. The findings might represent parts of a spectrum of ocular and brain responses to extended exposure to low gravity. Future research is ongoing for astronauts entering new missions.

References

1. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long-duration Space Flight. Ophthalmology 118(10):2058-2069 October 2011.

Note to media: Contact NANOS at info@nanosweb.org to request full text of the study and arrange interviews with experts.

About the North American Neuro-Ophthalmology Society

The North American Neuro-Ophthalmology Society (NANOS) is the only organization dedicated to the advancement of neuro-ophthalmologic education and information in North America and has over 500 members. NANOS is dedicated to the achievement of excellence in patient care through the support and promotion of education, communication, research, and the practice of neuro-ophthalmology. For more information, please visit www.nanosweb.org.

Janel Fick | EurekAlert!
Further information:
http://www.nanosweb.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>