Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA, Purdue study offers recipe for global warming-free industrial materials

04.05.2010
Let a bunch of fluorine atoms get together in the molecules of a chemical compound, and they're like a heavy metal band at a chamber music festival. They tend to dominate the proceedings and not always for the better.

That's particularly true where the global warming potential of the chemicals is concerned, says a new study by NASA and Purdue University researchers.

The study offers at least a partial recipe that industrial chemists could use in developing alternatives with less global warming potential than materials commonly used today. The study was published in the Proceedings of the National Academy of Sciences.

"What we're hoping is that these additional requirements for minimizing global warming will be used by industry as design constraints for making materials that have, perhaps, the most green chemistry," says Joseph Francisco, a Purdue chemistry and earth and atmospheric sciences professor.

The classes of chemicals examined in the study are widely used in air conditioning and the manufacturing of electronics, appliances and carpets. Other uses range from applications as a blood substitute to tracking leaks in natural gas lines.

The chemicals include fluorine atom-containing compounds such as hydro fluorocarbons, per fluorocarbons, hydrofluoroethers, hydrofluoroolefins, and sulfur and nitrogen fluorides.

In a 2009 study, Francisco and NASA collaborators Timothy Lee and Partha Bera examined the molecular qualities that make fluorinated compounds even more powerful warming promoters than chemicals emitted in greater quantities, such as carbon dioxide and methane.

The fluorinated compounds proved to be far more efficient at blocking radiation -- or heat -- in the atmospheric window. The atmospheric window is the frequency range in the infrared region of the electromagnetic spectrum through which radiation from Earth is released into space. This helps cool the planet. When that radiation is trapped instead of being released, a greenhouse effect results, warming the planet.

The new study looked at a broader class of chemicals to identify molecular-level features that make them more or less efficient at trapping radiation in the atmospheric window. The study employed results from atomic-scale quantum chemistry calculations done on computers from NASA and Information Technology at Purdue (ITaP), Purdue's central information technology organization.

"We specifically looked at molecules that we felt would have potential for industrial use as replacements for chlorofluorocarbons," says Francisco, whose research focuses on the chemistry of molecules in the atmosphere.

Among other things, the study looked at how the number and placement of electronegative atoms in a molecule's structure affects its radiative efficiency. The number and placement of fluorine atoms proved to be a key factor because they're very electronegative and form highly polar bonds with carbon and sulfur.

Fluorine atoms thus tend to change the bond-polarity of the molecules -- modifying the bonds holding the atoms in the structure. This, in turn, affects how a molecule will absorb infrared radiation that normally passes through Earth's atmosphere and into space.

“The polarity change is what makes for an efficient absorber of infrared radiation,” says Lee, chief of the Space Science and Astrobiology Division at NASA Ames Research Center.One message from the study: Avoid allowing fluorines to bunch up in a molecular structure. “In other words, don't put them all on one atom,” Francisco says. “Spread them out.”

The fluorinated compounds also persist longer in the atmosphere than carbon dioxide and other major global warming agents, Lee and Francisco note. Even if emitted in lower quantities, fluorine-containing chemicals might have a powerful cumulative effect. Some don't break down for thousands of years.

Writer: Greg Kline, science and technology writer, Information Technology at Purdue (ITaP), 765-494-8167, gkline@purdue.edu

Sources:
Joseph Francisco, 765-494-7851, francisc@purdue.edu
Timothy Lee, 650-604-5208, Timothy.J.Lee@nasa.gov

Greg Kline | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>