Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-Funded Study Tracks Climate Change on Three Continents

10.02.2011
A new study funded by NASA will look at whether climate change on three continents could be affecting the way fire behaves in North America, South America, and Australia.

A National Aeronautics and Space Administration grant of $1,950,135 will fund the three-year project. Researchers will analyze satellite data, as well as historical climate and fire data, for the entire continent of Australia, the lower 48 states in North America, and the Brazilian Amazon region in South America.

Principal investigator Mark Cochrane of South Dakota State University said the idea is that climate change could change the vegetation and hydrology in affected regions, perhaps resulting in more droughts and periods of intense fire behavior.

“We know that as climate changes, the vegetation has to respond. If it’s a short-term change, nothing happens. But if it’s a long-term change where an area gets drier or wetter, the vegetation will grow more, or less, or change in structure,” Cochrane said. “One of the things we’re testing is whether those changes that stress vegetation correlate to more fires, and more severe fires. So we determine where these large fires occurred and see if those correlate to the areas where the vegetation should be changing due to climate changes.”

The study will make use of NASA data from the Landsat and MODIS satellite systems in order to produce the first multicontinent analyses of fire regime shifts due to climate and land use changes — work that will also help researchers to estimate the effectiveness of ongoing mitigation efforts.

“Only through this type of large-scale study that incorporates many of the world’s ecosystems, land management approaches and climates, will it be possible to provide the context necessary to understand how fire is responding to climate change,” Cochrane said. “We will quantify changes in fire danger since 1901 — since 1948 in Amazonia — as well as fire incidence and fire effects in recent decades.”

The research will help people better understand the likelihood for future extreme fire events to occur. That will allow for better planning and mitigation efforts. Without the study, Cochrane said, humans could be increasingly vulnerable to unforeseen and potentially catastrophic shifts in fire regimes as the climate continues to change.

Cochrane, a professor in SDSU’s Geographic Information Science Center of Excellence, or GIScCE, is working with other experts across several disciplines.

His co-investigators are professor David Bowman from the University of Tasmania, Australia; senior researcher Carlos Souza of IMAZON, Brazil; professor David Roy of the GIScCE at South Dakota State University; research forest ecologist Kevin Ryan of the USDA Forest Service, Missoula, Mont.; senior scientist Thomas Loveland of the U.S. Geological Survey in Sioux Falls, S.D.; assistant professor Eugenio Arima of the University of Texas at Austin; senior scientist Jinxun Liu of SGT (contractor to USGS), Sioux Falls, S.D.; and professor Michael Wimberly of the GIScCE at South Dakota State University.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>