Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-Funded Study Refutes Alarmist Claims Of Drought Driven Declines In Plant Productivity And Risks To Global Food Security

29.08.2011
A new, comprehensive study by an international team of scientists, including scientists at Boston University in the US and the Universities of Viçosa and Campinas in Brazil, has been published in the current issue of Science (August 26, 2011) refuting earlier alarmist claims that drought has induced a decline in global plant productivity during the past decade and posed a threat to global food security.

Those earlier findings published by Zhao and Running in the August 2010 issue of Science (Vol. 329, p. 940) also warned of potentially serious consequences for biofuel production and the global carbon cycle. The two new technical comments in Science contest these claims on the basis of new evidence from NASA satellite data, which indicates that Zhao and Running’s findings resulted from several modeling errors, use of corrupted satellite data and statistically insignificant trends.

The main premise of Zhao and Running’s model-based study was an expectation of increased global plant productivity during the 2000s based on previously observed increases during the 1980s and 1990s under supposedly similar, favorable climatic conditions. Instead, Zhao and Running were surprised to see a decline, which they attributed it to large-scale droughts in the Southern Hemisphere.

“Their model has been tuned to predict lower productivity even for very small increases in temperature. Not surprisingly, their results were preordained,” said Arindam Samanta, the study’s lead author. (Samanta, now at Atmospheric and Environmental Research Inc., Lexington, MA, worked on the study as a graduate student at Boston University’s Department of Geography and Environment.)

Zhao and Running’s predictions of trends and year-to-year variability were largely based on simulated changes in the productivity of tropical forests, especially the Amazonian rainforests. However, according to the new study, their model failed miserably when tested against comparable ground measurements collected in these forests.

“The large (28%) disagreement between the model’s predictions and ground truth imbues very little confidence in Zhao and Running’s results,” said Marcos Costa, coauthor, Professor of Agricultural Engineering at the Federal University of Viçosa and Coordinator of Global Change Research at the Ministry of Science and Technology, Brazil.

This new study also found that the model actually predicted increased productivity during droughts, compared to field measurements, and decreased productivity in non-drought years 2006 and 2007 in the Amazon, in contradiction to the main finding of the previous report. “Such erratic behavior is typical of their poorly formulated model, which lacks explicit soil moisture dynamics,” said Edson Nunes, coauthor and researcher at the Federal University of Viçosa, Brazil.

The new study indicates that Zhao and Running used NASA’s MODIS satellite data products, such as vegetation leaf area, without paying caution to data corruption by clouds and aerosols. “Analyzing the same satellite data products after carefully filtering out cloud and aerosol-corrupted data, we could not reproduce the patterns published by Zhao and Running. Moreover, none of their reported productivity trends are statistically significant,” said Liang Xu, coauthor and graduate student at Boston University.

In any case, the trends in plant productivity reported by Zhao and Running are miniscule—a 0.34% reduction in the Southern Hemisphere offset by a 0.24% gain in the Northern Hemisphere for a net decline of 0.1% over a ten-year period from 2000 to 2009. “This is the proverbial needle in a haystack,” said Simone Vieira, coauthor and researcher at the State University of Campinas, Brazil. “There is no model accurate enough to predict such minute changes over such short time intervals, even at hemispheric scales.”

Any investigation of trends in plant growth requires not only consistent and accurate climate and satellite data but also a model suitable for such purposes. “The Zhao and Running study does not even come close,” said Ranga Myneni, senior author and Professor of Geography, Boston University. “Their analysis of satellite data is flawed because they included poor quality data and do not bother to test trends for statistically significance. Our analyses of four different higher-quality MODIS satellite vegetation products that have been carefully filtered for data corruption show no statistically significant trends over 85% of the global vegetated lands.”

This study was funded through a research grant by the NASA MODIS project to Prof. Myneni for investigation on the use of MODIS satellite data to study vegetation on our planet.

Experts to comment on this story:
Prof. Ian Colin Prentice, Macquarie University, colin.prentice@mq.edu.au, +61-425-040669
Dr. Compton J. Tucker, NASA, compton.j.tucker@nasa.gov, +1-301-614-6644
Prof. Inez Fung, UC-Berkeley, ifung@berkeley.edu, +1-510-643-9367
About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.
Ranga Myneni: ranga.myneni@gmail.com, +1-617-470-7065
Arindam Samanta: arindam.sam@gmail.com, +1-617-852-5256
Marcos Costa: mhcosta@ufv.br, +55-31-8727-1899

Ranga Myneni | Newswise Science News
Further information:
http://www.bu.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>