Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-Funded Study Refutes Alarmist Claims Of Drought Driven Declines In Plant Productivity And Risks To Global Food Security

29.08.2011
A new, comprehensive study by an international team of scientists, including scientists at Boston University in the US and the Universities of Viçosa and Campinas in Brazil, has been published in the current issue of Science (August 26, 2011) refuting earlier alarmist claims that drought has induced a decline in global plant productivity during the past decade and posed a threat to global food security.

Those earlier findings published by Zhao and Running in the August 2010 issue of Science (Vol. 329, p. 940) also warned of potentially serious consequences for biofuel production and the global carbon cycle. The two new technical comments in Science contest these claims on the basis of new evidence from NASA satellite data, which indicates that Zhao and Running’s findings resulted from several modeling errors, use of corrupted satellite data and statistically insignificant trends.

The main premise of Zhao and Running’s model-based study was an expectation of increased global plant productivity during the 2000s based on previously observed increases during the 1980s and 1990s under supposedly similar, favorable climatic conditions. Instead, Zhao and Running were surprised to see a decline, which they attributed it to large-scale droughts in the Southern Hemisphere.

“Their model has been tuned to predict lower productivity even for very small increases in temperature. Not surprisingly, their results were preordained,” said Arindam Samanta, the study’s lead author. (Samanta, now at Atmospheric and Environmental Research Inc., Lexington, MA, worked on the study as a graduate student at Boston University’s Department of Geography and Environment.)

Zhao and Running’s predictions of trends and year-to-year variability were largely based on simulated changes in the productivity of tropical forests, especially the Amazonian rainforests. However, according to the new study, their model failed miserably when tested against comparable ground measurements collected in these forests.

“The large (28%) disagreement between the model’s predictions and ground truth imbues very little confidence in Zhao and Running’s results,” said Marcos Costa, coauthor, Professor of Agricultural Engineering at the Federal University of Viçosa and Coordinator of Global Change Research at the Ministry of Science and Technology, Brazil.

This new study also found that the model actually predicted increased productivity during droughts, compared to field measurements, and decreased productivity in non-drought years 2006 and 2007 in the Amazon, in contradiction to the main finding of the previous report. “Such erratic behavior is typical of their poorly formulated model, which lacks explicit soil moisture dynamics,” said Edson Nunes, coauthor and researcher at the Federal University of Viçosa, Brazil.

The new study indicates that Zhao and Running used NASA’s MODIS satellite data products, such as vegetation leaf area, without paying caution to data corruption by clouds and aerosols. “Analyzing the same satellite data products after carefully filtering out cloud and aerosol-corrupted data, we could not reproduce the patterns published by Zhao and Running. Moreover, none of their reported productivity trends are statistically significant,” said Liang Xu, coauthor and graduate student at Boston University.

In any case, the trends in plant productivity reported by Zhao and Running are miniscule—a 0.34% reduction in the Southern Hemisphere offset by a 0.24% gain in the Northern Hemisphere for a net decline of 0.1% over a ten-year period from 2000 to 2009. “This is the proverbial needle in a haystack,” said Simone Vieira, coauthor and researcher at the State University of Campinas, Brazil. “There is no model accurate enough to predict such minute changes over such short time intervals, even at hemispheric scales.”

Any investigation of trends in plant growth requires not only consistent and accurate climate and satellite data but also a model suitable for such purposes. “The Zhao and Running study does not even come close,” said Ranga Myneni, senior author and Professor of Geography, Boston University. “Their analysis of satellite data is flawed because they included poor quality data and do not bother to test trends for statistically significance. Our analyses of four different higher-quality MODIS satellite vegetation products that have been carefully filtered for data corruption show no statistically significant trends over 85% of the global vegetated lands.”

This study was funded through a research grant by the NASA MODIS project to Prof. Myneni for investigation on the use of MODIS satellite data to study vegetation on our planet.

Experts to comment on this story:
Prof. Ian Colin Prentice, Macquarie University, colin.prentice@mq.edu.au, +61-425-040669
Dr. Compton J. Tucker, NASA, compton.j.tucker@nasa.gov, +1-301-614-6644
Prof. Inez Fung, UC-Berkeley, ifung@berkeley.edu, +1-510-643-9367
About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.
Ranga Myneni: ranga.myneni@gmail.com, +1-617-470-7065
Arindam Samanta: arindam.sam@gmail.com, +1-617-852-5256
Marcos Costa: mhcosta@ufv.br, +55-31-8727-1899

Ranga Myneni | Newswise Science News
Further information:
http://www.bu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>