Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Narrow subset of cells is responsible for metastasis in multiple myeloma, study finds


Although it is among the most highly metastatic of all cancers, multiple myeloma is driven to spread by only a subset of the myeloma cells within a patient's body, researchers at Dana-Farber Cancer Institute have found in a study presented at the annual meeting of the American Society of Hematology (ASH).

The study suggests that attacking those subsets with targeted drugs may degrade the disease's ability to spread throughout the bone marrow of affected patients, the authors say.

The discovery was made by developing a mouse model of the disease that enabled researchers to track which of 15 genetic groups - or subclones - of myeloma cells spread beyond their initial site in the animals' hind legs. By labeling the different subgroups with fluorescent dyes, researchers determined that just one of the subclones was responsible for the disease metastasis.

They then compared the pattern of gene abnormalities in the initial myeloma tissue and the metastatic tumors. They found that 238 genes were significantly less active in the latter group - comprising a gene "signature" of metastatic myeloma.

"Out of all the genes that were differently expressed in the two groups, we found 11 that played a functional role in metastasis and therefore may be drivers of the disease," said Irene Ghobrial, MD, of Dana-Farber, the study's senior author. If future studies confirm that role, the genes may become targets for therapies that block myeloma metastasis, she added.

The lead author of the study is Yuji Mishima, PhD, of Dana-Farber. Co-authors are Michele Moschetta, MD, Salomon Manier, MD, Siobhan Glavey, MD, Michaela Reagan, PhD, Yawara Kawano, MD, PhD, Nikhil Munshi, MD, Kenneth Anderson, MD, and Aldo Roccaro, MD, PhD, of Dana-Farber; Jiantao Shi, PhD, and Winston Hide, PhD, of Harvard School of Public Health; Francois Mercier, MD, and David Scadden, MD, of Massachusetts General Hospital.

This study was supported by the Leukemia & Lymphoma Society (LLS) Specialized Center of Research (SCOR) program.

Anne Doerr | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>