Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Narrow subset of cells is responsible for metastasis in multiple myeloma, study finds

08.12.2014

Although it is among the most highly metastatic of all cancers, multiple myeloma is driven to spread by only a subset of the myeloma cells within a patient's body, researchers at Dana-Farber Cancer Institute have found in a study presented at the annual meeting of the American Society of Hematology (ASH).

The study suggests that attacking those subsets with targeted drugs may degrade the disease's ability to spread throughout the bone marrow of affected patients, the authors say.

The discovery was made by developing a mouse model of the disease that enabled researchers to track which of 15 genetic groups - or subclones - of myeloma cells spread beyond their initial site in the animals' hind legs. By labeling the different subgroups with fluorescent dyes, researchers determined that just one of the subclones was responsible for the disease metastasis.

They then compared the pattern of gene abnormalities in the initial myeloma tissue and the metastatic tumors. They found that 238 genes were significantly less active in the latter group - comprising a gene "signature" of metastatic myeloma.

"Out of all the genes that were differently expressed in the two groups, we found 11 that played a functional role in metastasis and therefore may be drivers of the disease," said Irene Ghobrial, MD, of Dana-Farber, the study's senior author. If future studies confirm that role, the genes may become targets for therapies that block myeloma metastasis, she added.

The lead author of the study is Yuji Mishima, PhD, of Dana-Farber. Co-authors are Michele Moschetta, MD, Salomon Manier, MD, Siobhan Glavey, MD, Michaela Reagan, PhD, Yawara Kawano, MD, PhD, Nikhil Munshi, MD, Kenneth Anderson, MD, and Aldo Roccaro, MD, PhD, of Dana-Farber; Jiantao Shi, PhD, and Winston Hide, PhD, of Harvard School of Public Health; Francois Mercier, MD, and David Scadden, MD, of Massachusetts General Hospital.

This study was supported by the Leukemia & Lymphoma Society (LLS) Specialized Center of Research (SCOR) program.

Anne Doerr | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>