Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Shedding light and water

20.08.2012
Studies reveal a new way to make superhydrophobic surfaces with better self-cleaning capabilities
Many plants and animals have textured surfaces on their body for manipulating water. Some textured surfaces are designed, for example, to improve adhesion, while others may enable the collection of water from fog in arid regions. The lotus leaf, in particular, is the most widely cited example of having a textured surface with self-cleaning properties (see image).

The surface of the lotus leaf has a hierarchical structure — comprising both micrometer and submicrometer features — that makes it difficult for water droplets to spread. As a result, water droplets form tight spheres that easily roll off the leaf, picking up dirt particles en route. Such functionality can become useful if applied to textiles or windows, and may also be used in analytical techniques for controlling fluid flow.

Linda Yongling Wu at the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now developed a fast and cost-efficient way to fabricate large-scale superhydrophopic surfaces on a hard material — silica. The researchers used a laser to carve out a microstructured template that they then used to pattern a sol-gel coating. Nanoparticles were subsequently bound to the surface of the cured sol–gel surface to create a second level of hierarchy. The fabrication methodology can be adjusted to achieve different degrees of micro- and nanostructures.

In addition to the new fabrication methodology, Wu and co-workers considered various ways to optimize the water repellency of the textured surface. They found that increasing the surface roughness increases the true area of contact between the liquid and the solid, enhancing its intrinsic wetting properties. However, if the surface features are small enough, water can bridge protrusions leading to the formation of air pockets; the wettability of such a nanostructured material is then calculated as a weighted average of the wettability of the pure material and that of air. These two effects are known respectively as the Wenzel and Cassie-Baxter states.

The researchers derived an equation for calculating the surface contact angle between a water droplet and a silica surface with a certain degree of roughness. They found that there was a transition between the Wenzel to the Cassie-Baxter state, as surface structuring enters the nano dimension. The researchers found that for an optimum superhydrophobic effect, the Cassie–Baxter state must dominate the surface structure to allow a massive 83% of the surface state to be involved in air trapping with only 17% of the liquid drop surface actually in contact with the silica itself.

The researchers are hoping that their findings will generate new ideas for making innovative self-cleaning materials. “We are now developing the technology for real applications, such as easy-clean coating for solar films and structured surfaces for personal care products,” says Wu.
The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technologies

Image of a natural lotus leaf surface with bumps in size of about ten micrometers and spikes of below one micrometer. © A*STAR

References

Wu, L. Y. L., Shao, Q., Wang, X. C., Zheng, H. Y. & Wong, C. C. Hierarchical structured sol–gel coating by laser textured template imprinting for surface superhydrophobicity. Soft Matter 8, 6232 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>