Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Shedding light and water

20.08.2012
Studies reveal a new way to make superhydrophobic surfaces with better self-cleaning capabilities
Many plants and animals have textured surfaces on their body for manipulating water. Some textured surfaces are designed, for example, to improve adhesion, while others may enable the collection of water from fog in arid regions. The lotus leaf, in particular, is the most widely cited example of having a textured surface with self-cleaning properties (see image).

The surface of the lotus leaf has a hierarchical structure — comprising both micrometer and submicrometer features — that makes it difficult for water droplets to spread. As a result, water droplets form tight spheres that easily roll off the leaf, picking up dirt particles en route. Such functionality can become useful if applied to textiles or windows, and may also be used in analytical techniques for controlling fluid flow.

Linda Yongling Wu at the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now developed a fast and cost-efficient way to fabricate large-scale superhydrophopic surfaces on a hard material — silica. The researchers used a laser to carve out a microstructured template that they then used to pattern a sol-gel coating. Nanoparticles were subsequently bound to the surface of the cured sol–gel surface to create a second level of hierarchy. The fabrication methodology can be adjusted to achieve different degrees of micro- and nanostructures.

In addition to the new fabrication methodology, Wu and co-workers considered various ways to optimize the water repellency of the textured surface. They found that increasing the surface roughness increases the true area of contact between the liquid and the solid, enhancing its intrinsic wetting properties. However, if the surface features are small enough, water can bridge protrusions leading to the formation of air pockets; the wettability of such a nanostructured material is then calculated as a weighted average of the wettability of the pure material and that of air. These two effects are known respectively as the Wenzel and Cassie-Baxter states.

The researchers derived an equation for calculating the surface contact angle between a water droplet and a silica surface with a certain degree of roughness. They found that there was a transition between the Wenzel to the Cassie-Baxter state, as surface structuring enters the nano dimension. The researchers found that for an optimum superhydrophobic effect, the Cassie–Baxter state must dominate the surface structure to allow a massive 83% of the surface state to be involved in air trapping with only 17% of the liquid drop surface actually in contact with the silica itself.

The researchers are hoping that their findings will generate new ideas for making innovative self-cleaning materials. “We are now developing the technology for real applications, such as easy-clean coating for solar films and structured surfaces for personal care products,” says Wu.
The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technologies

Image of a natural lotus leaf surface with bumps in size of about ten micrometers and spikes of below one micrometer. © A*STAR

References

Wu, L. Y. L., Shao, Q., Wang, X. C., Zheng, H. Y. & Wong, C. C. Hierarchical structured sol–gel coating by laser textured template imprinting for surface superhydrophobicity. Soft Matter 8, 6232 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>