Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Shedding light and water

20.08.2012
Studies reveal a new way to make superhydrophobic surfaces with better self-cleaning capabilities
Many plants and animals have textured surfaces on their body for manipulating water. Some textured surfaces are designed, for example, to improve adhesion, while others may enable the collection of water from fog in arid regions. The lotus leaf, in particular, is the most widely cited example of having a textured surface with self-cleaning properties (see image).

The surface of the lotus leaf has a hierarchical structure — comprising both micrometer and submicrometer features — that makes it difficult for water droplets to spread. As a result, water droplets form tight spheres that easily roll off the leaf, picking up dirt particles en route. Such functionality can become useful if applied to textiles or windows, and may also be used in analytical techniques for controlling fluid flow.

Linda Yongling Wu at the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now developed a fast and cost-efficient way to fabricate large-scale superhydrophopic surfaces on a hard material — silica. The researchers used a laser to carve out a microstructured template that they then used to pattern a sol-gel coating. Nanoparticles were subsequently bound to the surface of the cured sol–gel surface to create a second level of hierarchy. The fabrication methodology can be adjusted to achieve different degrees of micro- and nanostructures.

In addition to the new fabrication methodology, Wu and co-workers considered various ways to optimize the water repellency of the textured surface. They found that increasing the surface roughness increases the true area of contact between the liquid and the solid, enhancing its intrinsic wetting properties. However, if the surface features are small enough, water can bridge protrusions leading to the formation of air pockets; the wettability of such a nanostructured material is then calculated as a weighted average of the wettability of the pure material and that of air. These two effects are known respectively as the Wenzel and Cassie-Baxter states.

The researchers derived an equation for calculating the surface contact angle between a water droplet and a silica surface with a certain degree of roughness. They found that there was a transition between the Wenzel to the Cassie-Baxter state, as surface structuring enters the nano dimension. The researchers found that for an optimum superhydrophobic effect, the Cassie–Baxter state must dominate the surface structure to allow a massive 83% of the surface state to be involved in air trapping with only 17% of the liquid drop surface actually in contact with the silica itself.

The researchers are hoping that their findings will generate new ideas for making innovative self-cleaning materials. “We are now developing the technology for real applications, such as easy-clean coating for solar films and structured surfaces for personal care products,” says Wu.
The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technologies

Image of a natural lotus leaf surface with bumps in size of about ten micrometers and spikes of below one micrometer. © A*STAR

References

Wu, L. Y. L., Shao, Q., Wang, X. C., Zheng, H. Y. & Wong, C. C. Hierarchical structured sol–gel coating by laser textured template imprinting for surface superhydrophobicity. Soft Matter 8, 6232 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>