Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Nanodiamonds in Recent Millenia Found

28.01.2014
OU-led Study in Oklahoma Panhandle Finds Additional Active Process Producing High Concentrations of Nanodiamonds in Recent Millennia

In a University of Oklahoma-led study, researchers discovered an additional active process, not excluding an extraterrestrial event, that may have led to high concentrations of nanodiamonds in Younger Dryas-age sediments and in sediments less than 3,000 years old.


Nanodiamonds discovered in the Younger-Dryas boundary sediments in the Bull Creek valley of the Oklahoma Panhandle. Such diamonds may support a hypothesis that a comet impact or explosion above the earth’s surface ~11,000 years ago triggered climate change, large mammal extinctions, and altered human cultural trajectories.

Findings from quantifying sediments of different periods along the Bull Creek valley in the Oklahoma Panhandle suggest the distribution of nanodiamonds was not unique to the Younger Dryas sediments.

“Whatever process produced nanodiamond concentrations in the Younger Dryas sediments may have been active in recent millennia,” said OU scientist Leland Bement, Oklahoma Archeological Survey.

Bement led the project with Andrew Madden, OU School of Geology and Geophysics, with collaborators Brian Carter, Oklahoma State University; Alexander Simms, University of California Santa Barbara; and Mourad Benamara, University of Arkansas.

The presence of nanodiamonds in the sedimentological record has been cited as evidence supporting a hypothesis that an ET impact, probably a comet, triggered the Younger Dryas period of global cooling around 11,000 years ago and contributed to the extinction of many animals and altered human adaptations. The OU-led study found no correlation of nanodiamond concentration caused by alternative processes, including soil formation, erosion, prehistoric human activity or other climate reversals in Oklahoma panhandle sediments.

The recent OU-led study, “Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma Panhandle, USA,” was published in the Proceedings of the National Academy of Sciences, Early Edition. For more information about this study, contact Leland Bement, Oklahoma Archeological Survey, at lbement@ou.edu or 405-325-7215.

Jana Smith | EurekAlert!
Further information:
http://www.ou.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>